Varietal Thiols and Green Characters

Natoiya Lloyd
natoiya.lloyd@awri.com.au
Compounds responsible for the green character

- **Methoxypyrazines**
 - IBMP, SBMP, IPMP

- **Sulfur compounds**
 - DMS, DES, DMDS
 - 2-Isobutylthiazole

- **C6 compounds**
 - (Z)-3-Hexen-1-ol
 - (E)-2-Hexenal
 - (Z)-3-Hexenal
 - Hexanal
 - 1-Hexanol
 - Hexyl esters

- 3-Isobutyl-2-methoxypyrazine (IBMP)
- Dimethyl sulfide (DMS)
- (Z)-3-Hexen-1-ol (cis-3-Hexen-1-ol)
Grape sources of C6 flavours in wine

- *cis*-3-Hexen-1-ol precursors
 - Formed from unsaturated fatty acids after berry damage (usually upon crushing)
 - Derived from linolenic acid through enzyme cascade

\[
\text{Linolenic Acid} \xrightarrow{\text{LOX/HPL}} (Z)-3-\text{Hexenal} \xrightarrow{\text{ADH}} (Z)-3-\text{Hexen-1-ol}
\]

Lipoxygenase \rightarrow hydroperoxide lyase \rightarrow alcohol dehydrogenase
Viticulture

- Enzymatic formation via LOX pathway leads to C6 compounds

- Differs between varieties and during berry development (e.g. Riesling vs Cabernet Sauvignon)

- Highest at pre-veraison in line with unsaturated fatty acid levels – decline in linolenic acid with ripening

- Higher in skin (from press cake) than must at all ripening stages
Modulating factors – *cis*-3-Hexen-1-ol

Winemaking

- Time and temperature of skin contact – similar extraction from 15-28 °C with max after 10-15 h, continual increase during contact time at 10 °C after 25 h
- Relatively stable but SO$_2$ and enzymatic activity have effects – O$_2$ needed for formation
- Esterification to the acetate – from green (alcohol) to green/floral/fruity (ester)

Storage

- Not affected by storage in presence of oxygen
- Minimal change with storage on lees for up to seven months
- Unaffected by short-term oxidative storage in presence of phenolics
- Slow decline with storage for 210 days but no impact from different SO$_2$ levels
Summary

- Green flavours in wine are caused by a number of different compound classes, with vastly different potencies
- Compound origins are in the grape, often in precursor form
- Viticultural practices and harvesting decisions can impact on green flavours
- Green flavours may be desirable, adding complexity or typicity to wine styles
Sensory impact of *cis*-3-Hexen-1-ol

- *cis*-3-Hexen-1-ol – cut grass, herbaceous, leafy; 400 µg/L threshold

- Typically not found above threshold in most studies

- Found in wine up to
 - 650 µg/L in young red wines (highest in Tempranillo)
 - 800 µg/L in aged red wines
 - 75 µg/L in Gewurztraminer
 - 600 µg/L in some Italian and Spanish white wine varieties (Falanghina and Macabeo)
Polyfunctional thiols are especially potent and have some of the lowest aroma thresholds of any food odorant.

Varietal thiols are important impact odorants in some wines e.g. Sauvignon Blanc.

<table>
<thead>
<tr>
<th>Thiol</th>
<th>Perception threshold</th>
<th>Aroma</th>
<th>OAV</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-MMP</td>
<td>3 ng/L</td>
<td>blackcurrant box tree passionfruit</td>
<td>Up to 30</td>
</tr>
<tr>
<td>3-MH</td>
<td>60 ng/L</td>
<td>grapefruit passionfruit</td>
<td>Up to 210</td>
</tr>
<tr>
<td>3-MHA</td>
<td>4 ng/L</td>
<td>passion-fruit box tree sweaty</td>
<td>Up to 195</td>
</tr>
</tbody>
</table>

Darriet et al. Flavour Fragr. 1995, 10, 385-392
Tominaga et al. Flavour Fragr. 1998, 13, 159-162
Volatile thiol sensory descriptors

- Individual volatile thiols contribute *tropical* aromas to wine, 3MH also *citrus* aroma
- Volatile thiol combinations had aromas of *tropical* & *cooked green vegetal* at both levels, and at high levels also *cat urine/sweaty*
- 4MMP does not contribute any distinctive sensory properties at high levels
- At high concentrations 3MHA is responsible for *cat urine/sweaty* aromas
Consumer preference of volatile thiols

- There was an optimal level of *cat urine/sweaty* attribute for one group of consumers identified.

- The majority of consumers preferred the samples with ‘green’ attributes, with a minority strongly preferring the ‘fruit’ and ‘estery’ flavours.

- Clear linking of volatile thiols in Sauvignon Blanc wines, their associated sensory attributes and effects on consumer preference.
<table>
<thead>
<tr>
<th>White varieties</th>
<th>Red varieties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sauvignon Blanc</td>
<td>Petit Manseng</td>
</tr>
<tr>
<td>Chardonnay</td>
<td>Pinot Blanc</td>
</tr>
<tr>
<td>Chenin Blanc</td>
<td>Pinot Gris</td>
</tr>
<tr>
<td>Colombard</td>
<td>Riesling</td>
</tr>
<tr>
<td>Gewürztraminer</td>
<td>Scheurebe</td>
</tr>
<tr>
<td>Gros Manseng</td>
<td>Semillon</td>
</tr>
<tr>
<td>Koshu</td>
<td>Sylvaner</td>
</tr>
<tr>
<td>Maccabeo</td>
<td>Tokay</td>
</tr>
<tr>
<td>Muscat</td>
<td></td>
</tr>
<tr>
<td>Muscadet</td>
<td></td>
</tr>
<tr>
<td>Petit Arvine</td>
<td></td>
</tr>
</tbody>
</table>
Volatile thiol concentrations in wines from around the world

4MMP

<table>
<thead>
<tr>
<th>Country of origin</th>
<th>4MMP concentration (ng/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Africa</td>
<td>(n=12)</td>
</tr>
<tr>
<td>Australia</td>
<td>(n=154)</td>
</tr>
<tr>
<td>France</td>
<td>(n=121)</td>
</tr>
<tr>
<td>New Zealand</td>
<td>(n=61)</td>
</tr>
</tbody>
</table>

3MH

<table>
<thead>
<tr>
<th>Country of origin</th>
<th>3MH concentration (ng/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Africa</td>
<td>(n=12)</td>
</tr>
<tr>
<td>Australia</td>
<td>(n=154)</td>
</tr>
<tr>
<td>France</td>
<td>(n=141)</td>
</tr>
<tr>
<td>New Zealand</td>
<td>(n=136)</td>
</tr>
</tbody>
</table>

3MHA

<table>
<thead>
<tr>
<th>Country of origin</th>
<th>3MHA concentration (ng/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Africa</td>
<td>(n=12)</td>
</tr>
<tr>
<td>Australia</td>
<td>(n=154)</td>
</tr>
<tr>
<td>France</td>
<td>(n=40)</td>
</tr>
<tr>
<td>New Zealand</td>
<td>(n=136)</td>
</tr>
</tbody>
</table>
Varietal thiol formation

- Optimise formation and maximise stability of varietal thiols
- Need to further understand precursor formation
 (Stress response: Kobayashi et al)
- Yeast plays a key role in thiol release into wine
- Need to understand relationship between precursors and free thiols

![Diagram of thiol formation process](image-url)
• 3MH precursors are mainly found in the skins of grape berries
• 4MMP precursors are mainly found in the flesh of grape berries
HPLC-MS/MS analysis of precursors

- Amount of precursors measured in SAB juice:

 Cys-3-MH 21 – 55 µg/L

 Glut-3-MH 245 – 696 µg/L

- Also found precursors in other varieties (in the juice) generally:

 Sauvignon Blanc > Pinot Gris > Chardonnay > Riesling

Capone et al. JAFC 2010, 58, 1390-1395
Precursor Grape studies

- 5 different SAB clones in the same location in Adelaide Hills of South Australia

- Ripening

- Transportation / Holding
Concentration of 3MH during ripening: Clone effects

Capone et al. 2011, JAFC. 59: 4649-4658
Amount of 3-MH precursors during ripening

Capone et al. 2011, JAFC. 59: 4649-4658
Effect of transportation on precursor concentration

Analysed shortly after machine harvesting then …….
Effect of transportation on precursors

Prior to Transportation

After Transportation

Precursor Concentration (nmol/L)

Cys-3-MH

Glut-3-MH

Capone et al. 2011, JAFC. 59: 4659-4667
Modulation of volatile thiol precursors

• Glutathione 3MH precursor is more abundant than Cysteine 3MH precursor, regardless of grape variety
• 3MH precursors are affected by ripening.
• 4MMP precursor peaked early in ripening season, at approx. 10° Beame
• Mild water stress & moderate Nitrogen supply increased volatile thiols in wine
• Foliage Copper spray pre-veraison decreased volatile thiols in wine
• Foliar Nitrogen fertiliser with & without Sulfur increased volatile thiols in wine
• Botrytis infection affects the levels of volatile thiols in the wine
• 4MMP precursor found in free run juice & light pressings
• 3MH precursor extracted mainly during skin contact – particularly longer periods of maceration and higher temperatures (18-20° C)
Formation pathway to 3-MH

Glutathione + (E)-2-Hexenal → Glut-3-MHAl → Glut-3-MH

3-MH "Tropical" aroma

Cys-3-MH

Peptidases

Cysgly-3-MH
Conclusions – Factors affecting precursor concentration in fruit

- **Ripening** - Low levels of precursors until commercial harvest

- **Transportation** – inc. precursor for Cys and Glut

 SO$_2$ and Ascorbic acid – a combination of both optimum –

 very high SO$_2$ suppresses conjugate formation

- **Glut-3-MHAI** – tentatively identified as intermediate between

 (hexenal + glutathione) and Glut-3-MH for the first time

- **Cysgly-3-MH** – Confirmed presence, is short lived
Modulation of volatile thiols

• Yeast selection
• Higher fermentation temperatures increased volatile thiol levels (20°C compared to 13°C)
• 3MH decreased during malolactic fermentation and barrel ageing
• The addition of Sulfur dioxide stabilised 3MH and 4MMP levels in wine
• Cork closures decreased the levels of 3MH and 3MHA in wine
• 3MHA levels decreased dramatically within the first year of bottling
• Addition of Copper as a wine fining agent decreased volatile thiol levels
• In-mouth release of volatile thiol precursors by saliva bacteria
Yeast strains can release differing levels of volatile thiols

Modified from Swiegers et al. (2009)
Modulation of volatile thiols

- Yeast selection
- Higher fermentation temperatures increased volatile thiol levels (20°C compared to 13°C)
- 3MH decreased during malolactic fermentation and barrel ageing
- The addition of Sulfur dioxide stabilised 3MH and 4MMP levels in wine
- Cork closures decreased the levels of 3MH and 3MHA in wine
- 3MHA levels decreased dramatically within the first year of bottling
- Addition of Copper as a wine fining agent decreased volatile thiol levels
- In-mouth release of volatile thiol precursors by saliva bacteria
Flavour optimisation – the future

💡 Be able to predict concentrations of volatiles from:
Acknowledgements

AWRI
Dimitra Capone
Kevin Pardon
Toni Cordente
Yoji Hayasaka
Ellie King
Katryna van Leeuwen
Cory Black

UA
David Jeffery
Mark Sefton

Industry Partners
Casella Winery
Steve Warne
Frank Mallamace

Australia’s grapegrowers and winemakers through their investment body, the Grape and Wine Research Development Corporation, with matching funds from the Australian government.
Sensory impact of 3-MHA

- 3-mercaptohexyl acetate
 - *passionfruit, box tree, sweaty*
- 4 ng/L threshold
- Found in Aust. wine up to 3,000 ng/L
- Found in NZ wine up to 12,000 ng/L
- Final concentration in your glass - 740 ng/L
Sensory impact of 3-MH

- 3-mercaptohexen-1-ol
 - grapefruit, passionfruit, leafy

- 60 ng/L threshold

- Found in wine up to 210 ng/L

- Final concentration in your glass - 7040 ng/L
Sensory impact of thiol mix (3-MHA + 4-MMP + 3-MH)

- Individual aroma characteristics
 - grapefruit, passionfruit, leafy, box tree, sweaty

- Combined aroma characteristics
 - cooked green veg, tropical

Spiked levels in your wine:

- 3MHA - 740 ng/L
- 3MH – 7040 ng/L
- 4MMP – 40 ng/L