Achieving target yields in cool climate Pinot Noir

Background

- Survey of Tasmanian sparkling producers revealed
 - Uncertainty surrounding cane vs spur pruning
 - ➤ No set rules around target yields
 - Sparkling wine yields significantly higher than table wine yields
- > Previous TIA research
 - ➤ Warm, sunny days at the time of initiation (Dec/Jan) set the scene for high maximum yield (bunch number)
 - Good vine reserves and adequate nutrition aid differentiation (maximises bunch size)
 - Possible for inflorescences to revert to tendrils if growth is not supported
 - ➤ Important that growers have an understanding of a block's natural fruitfulness in order to prune to a target yield

Temperature at Initiation

Sunshine at Initiation

Background to cane vs spur trial

- Cane pruning dominates
- Perceived basal bud infertility is the basis for pruning decision
- > Cane pruning is considerably more expensive to carry out
- ➤ With mechanisation becoming more common in new larger plantings, it is necessary to re-visit which pruning system is best suited to premium sparkling wine production

Trial Site

- > Over 3 seasons; 2010, 2011 and 2012
- ➤ 18 year old Coal River Valley premium sparkling wine producing vineyard, pruned by hand to 20 buds
- ➤ Pinot Noir (clone D5V12), Chardonnay (clone I10V1)
 - Spur pruned
 - Cane pruned

Results: Canopy

> Pronounced apical dominance under cane pruning

Results: Canopy

- ➤ 3 point quadrat assessment dates over the bulk of the canopy growth season, measured in mid November, mid December and mid January
- ➤ Canopy assessment for Pinot 2010

	Spur Pruned			Cane Pruned		
	25-Nov	22-Dec	28-Jan	25-Nov	22-Dec	28-Jan
Effective Insertions (%) ¹	100	100	100	65	80	100
Leaf contacts	92	116	147	56	92	103
Cluster contacts	2	8	10	3	7	8
Gaps %	0	0	0	35	20	0
Leaf Layer Number(LLN)	2.30	2.90	3.68	1.40	2.30	2.58

Results: Canopy

Spur Pruning

Cane Pruning

Results: Yield

➤ Distribution of fruitfulness for Chardonnay 2012

Results: Yield

		Bunch number			
		2010	2011	2012	
Pinot Noir	Cane pruned	22.87	26.20	17.40	
	Spur pruned	25.13	31.87	21.00	
	Significance	ns	<0.005	<0.05	
Chardonnay	Cane pruned	13.33	21.20	13.33	
	Spur pruned	18.73	26.27	19.47	
	Significance	<0.001	<0.01	<0.001	

➤ In all cases, cane pruned vines had fewer, but larger bunches

Results: Yield

		Bunch weight (g)			
		2010	2011	2012	
Pinot Noir	Cane pruned	122.95a	131.12	105.61	
	Spur pruned	100.74b	101.92	85.01	
	Significance	0.0003	0.013	0.021	
Chardonnay	Cane pruned	104.6	105.21	57.33	
	Spur pruned	79.4	90.44	47.94	
	Significance	<0.01	ns	ns	

> Yield per vine was not significantly different in any year for Pinot

Results: Fruit Quality > There was no difference in TSS, pH nor Titratable Acidity, in any year.

Results: Wine Quality

➤ When analysing the base wine spectra, in all years there was distinct separation of the pruning systems

Results: Wine Quality

- 2010 vintage, 265, 300 and 330 nm feature
- 280 nm not significant

Results: Wine Quality

- Similarities existed between juice and base wine spectra, however not in all cases
- e.g. Pinot 2012

Results: Carbohydrates

		Cane starch (mg/g)	
		2010	2011
Pinot Noir	Cane pruned	77.81	53.20
	Spur pruned	71.64	64.07
	Significance	ns	<0.01
Chardonnay	Cane pruned	78.53	56.02
	Spur pruned	80.03	54.70
	Significance	ns	ns

- Expected to see a difference in overwintering starch but we didn't (except in 2011 Pinot Noir vines)
- Also no significant difference in soluble sugars between pruning treatments
- Large seasonal difference in stored starch and soluble sugars
- NB starch measured in 2011 is what is available for budburst and inflorescence size development for 2012 vintage

Seasonal climate data

	Vintage			
	2010	2011	2012	
Mean January Temp ° C	23.8	22.7	23.7	
Growing Degree Days (Oct – Apr)	1291.1	1110	1247.8	
Growing Season Rain (mm) (Oct – Apr)	331.6	345.4	296.6	

> Helps to explain yield and carbohydrate results

In summary...

- Spur pruned canopies established more quickly and were more even
- Spur pruned vines had a greater number of smaller bunches, however yield per vine was not significantly different
- Juice quality parameters were not significantly different
- Base wine spectra showed distinct separation between pruning systems
- Spectra suggest sensory effects eg Hydroxycinnamates
- Very little difference in carbohydrates

Comparison of fruitfulness of Pinot clones

- > 3 Southern Tasmanian sites
- > 2 Pinot Noir clones
 - > 114 and D5V12
- Did bud dissections to count inflorescence primordia microscopically
- > 3 weeks after budburst counted actual inflorescences

Predicted probability of counts of inflorescence primordia (determined microscopically) and inflorescences (determined 3 weeks after bud burst) of two Pinot Noir clones (114 and D5V12) each at three sites in Southern Tasmania. Blind = no shoot, 0 = a shoot with no inflorescence, 1 = a shoot with 1 inflorescence, 2+=a shoot with 2 or more inflorescences.

Probability of Count Category							
Site	A	В	C				
Inflorescence Primordia	Inflorescence Primordia						
Category							
0	0.062	0.066	0.018				
1	0.314	0.277	0.335				
2+	0.624	0.657	0.648				
Inflorescence							
Blind	0.068	0.295	0.036				
0	0.143	0.201	0.275				
1	0.546	0.243	0.621				
2+	0.244	0.262	0.069				

 Site B had the highest probability of blind or unfruitful buds

Cane selection at pruning is important for fruitfulness

Managing Pinot Noir Fruitfulness

- > No significant difference in yield between spur and cane pruning
 - Vines more balanced under spur pruning
 - Cane selection very important, perhaps could get very different results with focus on cane selection
- > Overwintering carbohydrate status important in marginal years
- Bud dissections a valuable tool to assist in understanding natural fruitfulness of different clones of Pinot Noir in your vineyard
- > Fruitfulness work continuing with Fiona's current project

Acknowledgements

- > ICIP Contributors
- Chris Harrington and Geraldine Colombo
- Dr's Fiona Kerslake and Bob Dambergs
- ➤ Dr's Steve Wilson and Greg Lee
- > Richie Butler, Widad Al Shawi, Tanya Beaumont and Caroline Claye