
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Improving Winery Refrigeration Efficiency 

2011 Vintage Case Studies  

 

 

 
 

 Warmer white fermentation temperatures 

 Tank stratification 

 

 
 

Funded by: 

Improving Winery Refrigeration Efficiency 
Winery B 

Case study report 1 



 

 i  

Author: Dr Simon Nordestgaard, Senior Engineer, AWRI 

 

This report is available for download from www.awri.com.au or www.gwrdc.com.au. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This document was prepared by Commercial Services, a business unit of The Australian Wine 

Research Institute (AWRI). It was funded by Australian grapegrowers and winemakers through their 

investment body the Grape and Wine Research and Development Corporation (GWRDC), with 

matching funds from the Australian Government. The AWRI is part of the Wine Innovation Cluster. 
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Abstract 

Three side-by-side fermentation trials were performed during the 2011 vintage to investigate the 

influence of white juice/wine fermentation temperature on cooling requirements. The trials 

identified a reduction in overall cooling requirements of between 0 and 8% for ferments controlled 

at elevated temperatures (e.g. 20°C as opposed to of 16°C). Reductions of this order were consistent 

with a review of the mechanisms of heat generation and transfer during fermentation. Increased 

evaporation of ethanol and water was likely a key source of the small reduction in overall cooling 

requirements at warmer fermentation temperatures. 

 

For a winery fermenting 30,000 kL per annum it was estimated that the potential electricity savings 

associated with reduced cooling requirements at warmer fermentation temperatures were 

approximately $4,000 per annum. Given that annual electricity consumption for a winery of this size 

costs in the order of $1,000,000 and there remains some unquantified risk of sensory damage; the 

use of warmer fermentations of the order of 4°C is not likely to be justifiable on the basis of 

electricity savings alone. Faster fermentations, resulting from warmer fermentation temperatures 

may assist wineries limited by fermentation tank capacity, but faster fermentations do require a 

higher rate of cooling and available refrigeration capacity could potentially become an issue during 

some peak periods. 

 

The 58 kL tanks used in these trials were fitted with only one cooling jacket; positioned towards the 

bottom of the tanks. The location of this jacket sometimes resulted in significant cooling-induced 

stratification when the brine was flowing through the jacket but the agitator was not on. 

Stratification did not generally occur when fermentation was actively proceeding as the generation 

of carbon dioxide induced mixing that was sufficient to ensure temperature homogeneity. 

 

Poor tank cooling, agitation and temperature measurement configurations have the potential to 

negatively influence wine quality and consistency, increase energy use, and can result in misleading 

characterisation of tank temperature on winery monitoring systems, which could in turn result in 

sub-optimal decision making. Wineries should be aware of this and possibly consider auditing the 

temperatures at different points in tanks at their site to verify that temperatures reported on winery 

monitoring systems are accurate.  
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1. Introduction 

Refrigeration can account for 50%-70% of winery electricity consumption. Improving the efficiency 

of winery refrigeration is therefore of considerable interest. The Grape and Wine Research and 

Development Corporation (GWRDC) funded a project by Commercial Services at The Australian Wine 

Research Institute (AWRI) to help the Australian wine industry improve refrigeration efficiency and 

decrease electricity usage and/or costs. 

 

As part of this project, a reference guide was produced and is available for download from the 

GWRDC (www.gwrdc.com.au) and AWRI (www.awri.com.au) websites. This short guide provides 

background on the operation of winery refrigeration systems and lists improvement opportunities.  

 

Case studies were performed at two wineries (Winery A and Winery B) during 2011 in order to 

investigate some improvement opportunities/topics in more detail. These case studies have been 

written up in three technical reports (this document and two others) and are available for download 

from the aforementioned websites. 

 

This report describes the work at Winery B during the 2011 vintage. The use of warmer white 

fermentation temperatures and tank stratification were investigated. The impetus to study warmer 

white wine fermentation temperatures at Winery B was mainly from preliminary trials performed 

during the 2010 vintage at the winery that had indicated that there may be reductions in overall 

cooling requirements for white fermentations (without significant sensory impact) if they were to be 

performed at warmer temperatures than sometimes practiced (e.g. 18°C instead of 14°C). For 

practical reasons, these preliminary trials had been performed sequentially using different batches 

of Chardonnay grapes. The 2011 vintage trials were therefore to be performed under more 

controlled conditions side-by-side.  
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2. Materials and methods 

2.1 Winery and cooling system 

Winery B is a large winery (>20,000 tonnes) with five refrigeration plants (all employing ammonia as 

refrigerant), which provide direct expansion cooling of some tanks/devices as well as cold brine for 

reticulation around the winery to cool other tanks.         

 

2.2 Trial design, tank specifications and monitoring equipment 

Three side-by-side fermentation trials were performed during the 2011 vintage. In each trial one of 

the tanks was fermented at a warmer temperature than the other. Fermentations were performed 

in two 58 kL (nominal) insulated stainless steel tanks cooled using brine. The experimental 

arrangement employed for each tank and the approximate tank dimensions are illustrated in Figure 

2.1.  

 

For each tank, brine flow rate (FBrine) was measured using a ¾” turbine flow meter (G2S07I09LMA; 

GPI, USA) and brine temperatures into (TBrine,in) and out of (TBrine,out) the cooling jacket were 

measured using 12-bit temperature sensors (S-TMB; Onset, USA) inserted in custom-built in-line 

thermowells. Juice/wine temperature was measured using a sensor inserted in a new thermowell 

installed next to the tank door (TLow) and also by a sensor directly in the juice/wine much higher in 

the tank (THigh). These sensors were interfaced with a data logger capable of communicating via the 

GSM cellular network (Hobo U30/GSM; Onset). A pulse access module (GPI) and pulse input adapter 

(Onset) were required to interface each flow meter with the data logger.  

 

In addition to this AWRI data logger, temperatures recorded by the winery’s own temperature probe 

(TMid) was logged via the winery SCADA system, together with the set-point temperature and 

agitator status. However, the availability of these data was inconsistent; apparently as a 

consequence of data losses during power failures.    

 

Photos showing the different components of the experimental arrangement are presented in Figures 

2.2 to 2.8.       

 

2.3 Data analysis 

For the purposes of this trial, fermentation time was taken to be the time between yeast addition 

and the juice/wine reaching a density of approximately 0° Baumé (or extrapolated to the time when 

that density would have been reached).   

 

The tank temperature at any point in time was estimated by assuming the wine below the top of the 

cooling jacket was at the temperature reported by the lower probe, TLow, and half of the remaining 

wine was at the temperature of the middle probe, TMid, and half was at the temperature of the 

upper probe, THigh. The time-weighted average tank temperature over the fermentation time was 

used to nominally describe the fermentation.  
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The cooling imparted on the wine by the brine flowing through the tank jacket over the course of 

each ferment was calculated from the logged brine flow rate (FBrine) and brine temperature rise 

(TBrine,out – TBrine, in) during each minute of the fermentation time, in conjunction with the brine 

properties presented in Table 2.1. The theoretical cooling required if there had been no temperature 

rise in the wine was then calculated by adding the product of the temperature rise over the 

fermentation time and the specific heat capacity of the juice/wine, which was taken to be 4.3 

kJ/(L.°C) (Rankine 2004).  

 

 

 

Figure 2.1: Approximate tank dimensions and control/data logging arrangement for one of the two 

58 kL tanks (tank fittings, brine line ball valves and strainers not shown) 
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Table 2.1: Brine properties 

Parameter Valuea 

Density: 985 kg/m3 
Specific heat capacity: 3.6 kJ/(kg.°C) 
a
From Alcool LF data spreadsheet obtained by email from Wendy Do at Sucrogen Bioethanol in November 

2010. Assumed a brine freezing point of -15 °C, which corresponds with an Alcool LF concentration of 34% v/v.  

 

 

 

 

 

Figure 2.2: 58 kL tanks employed in experiments 
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Figure 2.3: Higher temperature probe (THigh, viewed from door of empty tank) 

 

Figure 2.4: Tank agitator and thermowell containing the winery temperature probe (TMid), which 

transmits to the brine solenoid valve control system 

 



 

 6  

 

Figure 2.5: Ground level external view of one of the tanks. The lower temperature probe (TLow) is 

inserted in the new thermowell installed next to the tank door 

 

Figure 2.6: Flow meters (FBrine) and temperature probes (TBrine,in) installed in the brine inlet line to 

the jacket of both tanks 
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Figure 2.7: Temperature probes (TBrine,out) installed in the brine outlet lines from the jackets of both 

tanks   

 

Figure 2.8: GSM equipped data logger connected to the temperature sensors and flow meter pulse 

adapters 
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3. Results  

Experimental results are summarised in Table 3.1. Detailed parameter traces over each of the three 

side by side-by-side trials are presented in Figures 3.1 to 3.6. Key operational events are marked on 

these plots. Additions of diammonium phosphate, polyvinylpolypyrrolidone, copper sulfate and 

sulfur dioxide were also made as directed by winemakers with the same doses being added to both 

tanks in the fermentation trial.       

 

Table 3.1: Summary of side-by-side fermentation trials 

 Low temperature High temperature 

   
Trial 1    
Chardonnay (Riverland)   
   

Average temperature (°C) 15 19 
Volume (L) 45,400 45,400 

Length (days) 10 5.3 
Initial density (°Baumé) 10.7 11.0 

Agitator On/offa On/offa 
Cooling (kJ/L) 78 66 

Juice/wine temperature rise (°C) 3 6 
Cooling corrected for temperature rise (kJ/L) 91 91 
   
Trial 2   
Semillon (Riverina)   
   

Average temperature (°C) 16 20 
Volume (L) 51,200 51,100 

Length (days) 7.4 6.7 
Initial density (°Baumé) 9.3 8.9 

Agitator On On 
Cooling (kJ/L) 65 71 

Juice/wine temperature rise (°C) 3 0 
Cooling corrected for temperature rise (kJ/L) 77 71 
   
Trial 3   
Riesling (Langhorne Creek)   
   

Average temperature (°C) 16 18 
Volume (L) 50,600 48,800 

Length (days) 17b 16b 
Initial density (°Baumé) 10.4 10.4 

Agitator Off Off 
Cooling (kJ/L) 64 52 

Juice/wine temperature rise (°C) 4 6 
Cooling corrected for temperature rise (kJ/L) 81 78 
a
Power failure during fermentation. The agitator did not restart when power was restored (standard practice 

to avoid gushing). 
b
Additional yeast was added mid-way through the fermentation. 
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Figure 3.1: Trial 1 – Chardonnay – 15°C 

 

 

 

 

Figure 3.2: Trial 1 – Chardonnay – 19°C. 
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Figure 3.3: Trial 2 – Semillon – 16°C 

 

 

 

 

Figure 3.4: Trial 2 – Semillon – 20°C 
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Figure 3.5: Trial 3 – Riesling – 16°C 

 

 

 

Figure 3.6: Trial 3 – Riesling – 18°C 
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4. Discussion 

4.1 Sensory analysis  

Sensory comparisons between side-by-side ferments were to be performed in order to balance any 

possible energy savings from using higher fermentation temperatures against any negative sensory 

influences. Unfortunately, there were issues that prevented meaningful sensory comparisons being 

undertaken in all three trials. The Semillon grapes used in Trial 2 were badly diseased and the wines 

showed negative sensory characters irrespective of treatment temperature. For both treatment 

temperatures of Trial 3 (Riesling), the fermentations were becoming stuck, which negatively affected 

the sensory characters of the wines.   

 

4.2 Cooling requirements 

The results from the three side-by-side trials (Table 3.1) showed overall cooling requirements 

(corrected for juice/wine temperature rise) for different fermentation temperatures were very 

similar. For Trial 1 (Chardonnay) the results were the same for both fermentation temperatures, 

while for Trial 2 (Semillon) and Trial 3 (Riesling) cooling requirements were slightly lower for the 

fermentation performed at the warmer temperature.   

 

To better understand the factors that can influence cooling requirements it is worth considering the 

different mechanisms by which heat is generated and transferred during fermentations and how 

each of these may be influenced by the use of different fermentation temperatures. The key 

mechanisms are illustrated in Figure 4.1 and in summary are: 

 

 Generation of heat from the fermentation reaction as sugar is converted to ethanol.   

 Transfer of heat to the fermenting juice/wine from the air through the tank walls.  

 Removal of heat in the carbon dioxide leaving the fermenter and by the evaporation of 

water and ethanol.  

 Transfer of heat from the wine to the brine by means of the cooling jacket (this is the cooling 

measured as part of this study). 

 

While it is widely acknowledged that the rate of energy release as a result of the fermentation 

reaction increases with temperature (e.g. Peynaud 1985), there is no evidence in the literature, to 

the author’s knowledge, to suggest that the total energy released from this reaction decreases with 

increasing temperature. The total energy released from the fermentation reaction is reported to be 

in the order of 100 kJ/mol sugar (ASHRAE 1982, Williams 1982, Boulton et al. 1996, Rankine 2004, 

Ribéreau-Gayon et al. 2006). As an order of magnitude estimate per volume of juice, if we assume a 

concentration of 1 mol/L of sugar (i.e. 180 g/L glucose and fructose), the energy released by the 

reaction over the course of the fermentation will be approximately 100 kJ/L. Notably in the 

fermentations performed, the cooling required (corrected for temperature rise) was highest for the 

Chardonnay (Trial 1), which had the highest initial sugar content and lowest for the Semillon (Trial 2), 

which had the lowest initial sugar content.  
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The heat transfer to or from the wine through the tank walls could possibly be influenced by the 

fermentation temperature. Simplistically, the driving force in this heat transfer process is the 

temperature difference between the juice/wine and the air on the other side of the tank wall. 

Therefore, if the juice/wine is warmer, the warming driving force will be reduced. Preliminary results 

from storage trials performed in one of the same tanks set at 5°C demonstrated ambient heat gains 

of approximately 0.6 kJ/L/day. This occurred between 17 and 31 May, during which time the 

ambient temperature averaged 13°C (average of maximum and minimum daily temperatures as 

recorded at a weather station approximately 10 km from the winery, Bureau of Meteorology 2011), 

corresponding with an ambient-wine temperature differential of 8°C. Average ambient temperature 

calculated in the same manner for Trials 1, 2 and 3 were 22°C, 24°C and 17°C, respectively. The 

corresponding average juice/wine temperature pairs for each trial were 15/19°C, 16/20°C and 

16/18°C. Therefore, the maximum ambient-wine temperature differential encountered during 

fermentation trials was also 8°C and occurred during Trial 2. If direct proportionality is assumed, the 

difference in ambient gains between the 16°C and 20°C treatments is only 0.3 kJ/L/day or 

approximately 2 kJ/L in total over the length of the Trial 2 fermentations.       

 

Energy is carried away by the 35-50 volumes of carbon dioxide released from the fermenter during 

fermentation (Rankine 2004) and also by the evaporation of ethanol and water, an effect which 

increases with temperature (Williams and Boulton 1983). Overall, this results in cooling of the 

juice/wine in the order of 6 kJ/L at a fermentation temperature of 15°C and 10 kJ/L at a 

fermentation temperature of 20°C, assuming a sugar concentration of 1 mol/L (Boulton et al. 1996).  

 

Energy accumulates in the juice/wine itself as its temperature rises and this can be a rather 

significant consideration in calculations of this nature if temperature is not held constant over the 

length of the fermentation by cooling systems. The specific heat capacity of wine is approximately 

4.3 kJ/(L.°C) so if the temperature rises from 18°C to 24°C over the course of a ferment as a result of 

changes to the set-point, 26 kJ/L is accumulated by the wine. For this reason, all calculations of 

cooling requirements from experimental data were corrected for temperature rises to ensure that 

correct comparisons were made between treatments that had different temperature rises. It is also 

important to consider that ultimately wine will typically be stored at temperatures below even the 

lowest fermentation temperature considered.   

 

From the analysis presented, there may be expected to be some reduction in cooling requirement 

related to increased evaporation of ethanol and water at warmer fermentation temperatures, 

perhaps in the order or 4 kJ/L between fermentations at 15 and 20°C as well as some reduced 

ambient heat gains in the order of 2 kJ/L. This approximately 6 kJ/L reduction in cooling 

requirements is relatively minor in relation to the approximately 100 kJ/L released from the 

fermentation reaction itself. This small predicted reduction in cooling requirements with warmer 

fermentation temperatures is consistent with the observed experimental results. 

 

To contextualise the savings possible from using warmer fermentation temperatures (e.g. 20°C 

instead of 15°C), it is worth considering the cost of a 6 kJ/L difference in fermentation cooling across 

the entire winery. If we assume that 30,000 kL are fermented at the winery each vintage, COP+brine is 

2 (a modified COP for estimation purposes that incorporates brine reticulation loop heat gains and 

pumping requirements), and that the cost of electricity is $0.15/kWh, the savings from fermenting at 
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warmer temperatures amount to only $3,750 across the entire site each vintage. When the 

possibility of quality downgrades is taken into consideration, the use of warmer fermentation 

temperatures does not appear to be worth pursuing on the basis of electricity savings, particularly 

given that faster fermentations require a higher rate of cooling and available refrigeration capacity 

could become an issue during some peak periods. 

 

   

 

 
 

Figure 4.1: Heat generation and transfer during fermentation 
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4.3 Tank design and stratification  

During the trials, the presence of temperature sensors at three different levels in the tanks allowed 

for a better understanding of what was occurring in each tank than would normally be possible with 

only one temperature probe.  

 

It is apparent in Figures 3.1 to 3.6 that whenever the agitator was running the temperature in the 

tank was essentially uniform. This was not necessarily the case when the agitator was not running, 

with stratification sometimes being induced by the cooling jacket.  

 

When fermentation was actively occurring, but the agitator was not running, as was the case for 

Trial 3 (Figures 3.5 and 3.6) the temperature typically remained fairly uniform throughout the tank. 

The currents imparted by the rising carbon dioxide gas, evidently provided sufficient agitation to 

achieve this. One exception was at the end of the 15°C Trial 1 fermentation (Figure 3.1).  When the 

power failed and the agitator was locked out, the density of the juice/wine was still at approximately 

4.5° Baumé and the batch was still fermenting yet the tank still stratified.    

 

Excerpts from Figures 3.2 and 3.5 presented in Figures 4.2 and 4.3, respectively illustrate examples 

of brine-induced stratification observed when fermentation was not actively proceeding and the 

agitator was off.   

 

As shown in Figure 4.2, there was a brief power failure at approximately midnight on 09/02/2011, 

which locked out the agitator. From this point onwards the brine flow stayed on almost indefinitely 

as the winery probe never reached the set-point temperature. The temperature lower in the tank 

diverged considerably from that higher in the tank, reaching as low as 3°C despite the tank 

temperature set-point being 20°C.  

 

Figure 4.3 shows the early stages of one of the ferments in Trial 3. At a point in time, it was evident 

from daily wine sampling that the juice temperature was very low at the bottom of the tank and a 

pump-over was therefore performed to rectify this issue. This instance could have been avoided 

altogether by setting the cooling set-point a couple of degrees above the actual juice temperature 

initially, so that cooling was only activated when the fermentation was actually proceeding (as 

evidenced by the temperature rise). This is a practice already employed by winemakers familiar with 

the issues involved. There were problems with the fermentations performed in Trial 3 becoming 

partly stuck and it is possible that this may have been somewhat related to the influence of these 

very low temperatures at the bottom of the tank on the yeast.   

 

Interestingly in Figure 4.3, following the pump-over, the temperature at the bottom of the tank 

actually remained greater than that higher up in the tank for approximately 15 hours. This is unusual 

as warmer wine generally has a lower density and as such in this situation will quickly rise towards 

the top, mixing and homogenising the tank in the process. In studies with beer it has been 

demonstrated that as beer cools it reaches a maximum density at approximately 3°C and below that 

temperature the beer actually decreases in density possibly resulting in temperature inversion 

(Boulton and Quain 2006). It is possible that a similar phenomenon may have occurred in this 

instance.    
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Excessive cooling at the bottom of the tank can influence the speed and quality of the fermentation. 

Potentially it may also waste electricity. The energy will typically be recovered when the tank is next 

mixed, but the temperature may now be lower than what was actually required.  

 

Temperature stratification can be extremely misleading given that there is typically only one 

temperature probe in each tank and the winemaker may have to make decisions based on the 

measurement reported on the monitoring system.   

 

From informal discussions, it appears that a number of people at the winery were aware that these 

tanks can suffer from cooling-induced stratification. It has been suggested that the problem is 

related to the location of the temperature probe, and that it could be resolved by relocating the 

temperature probe to a position lower in the tank. With the relocation of the temperature probe to 

the bottom of the tank, it would appear that the extreme stratification would not occur, but it also 

may not be possible to cool the upper part of the tank sufficiently as the cooled juice/wine will 

typically be the densest and tend to stay at the bottom of the tank. The fundamental design flaw in 

these tanks is really the existence of only one jacket and this being located at the bottom of the 

tank. However, it is quite plausible that these tanks were only ever designed with the intention of 

the jacket only being used when the agitator was on or when agitation was provided by 

fermentation.   
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Figure 4.2: Stratification after power failure (agitator lockout) during Trial 1 – Chardonnay – 19°C         

  

  

Figure 4.3: Stratification during Trial 3 – Riesling – 16°C         
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5. Conclusions and recommendations 

1. Cooling requirements were reduced by between 0 and 8% for fermentations performed at 

warmer fermentation temperatures (e.g. 20°C instead of 16°C) during the 2011 vintage. 

Examination of heat generation and transfer mechanisms supported this result of a small 

reduction in overall energy use with warmer fermentation temperatures. Across a site 

fermenting 30,000 kL per annum, it is estimated that the electricity savings from using 

warmer fermentation temperatures would amount to approximately $4,000 per annum.  

 

a. Given the modest savings and the potential risks of sensory damage, generally it 

would not seem to be worthwhile pursuing the use of marginally warmer than usual 

white fermentation temperatures. The exception to this could be in wineries with 

very limited tanks appropriate for fermentation, in which case the faster speed of 

fermentation at warmer temperatures may be useful to manage throughput (at the 

same time it must also be considered that faster fermentations do require a higher 

rate of cooling and available refrigeration capacity could potentially become an issue 

during some peak periods). 

 

2. There were significant problems with brine-induced stratification when the agitator was not 

running and fermentation was not actively proceeding. Temperatures at the bottom of the 

tanks sometimes reached as low as 3°C when, at the same time, the temperature nearer to 

the top of the tank was as high as 20°C.  This was related primarily to the design of the tanks, 

with them having only one cooling jacket and this being located towards the bottom of the 

tank. There is potential for stratification of this nature to influence wine quality and 

consistency and possibly waste energy through excessive cooling. Results output by single-

point temperature probes in tanks presented on winery monitoring systems can also 

become extremely misleading in these circumstances.  

 

a. Wineries should be aware of the potential for brine-induced stratification and 

consider auditing the temperatures at different points in tanks at their site to verify 

that tank temperatures reported on winery monitoring systems are accurate.   
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8. Glossary 

 

Brine:  The fluid that is cooled by a refrigeration plant and then circulated 

around the winery to cool vessels and other operations. Brine 

consists of water with freezing-point suppressants together with 

corrosion inhibitors and colorants.    

  

COP:  The coefficient of performance (COP) describes the efficiency of a 

refrigeration plant. It is the ratio of the cooling power to the 

electrical power input, principally that to drive the compressor. The 

overall efficiency of the winery cooling system will also be 

influenced by brine reticulation system heat gains and pumping 

electricity requirements.    

 

Freezing-point suppressant: An additive that lowers the temperature at which brine will freeze.  

 

Refrigerant:    The working fluid in a refrigeration plant. 

 

SCADA: Supervisory Control And Data Acquisition (SCADA) generally refers 

to a centralised system for controlling and monitoring an industrial 

site.   

 

Set-point:   The desired setting. 

 

Specific heat capacity: The amount of energy required to raise the temperature of a unit 

mass of a substance by a given amount. 

 

Stratification: Layering; related to less dense warmer liquid layering on top of 

more dense colder liquid in this instance. 

 

Thermowell: A thin closed-ended tube that extends into a vessel (or into other 

equipment) into which a probe can be inserted to measure 

temperature without direct contact with the vessel contents.   

 

For further background, the reader is directed to the ‘Improving Winery Refrigeration Efficiency’ 

reference guide produced as part of this project. This can be downloaded from the AWRI 

(www.awri.com.au) and GWRDC (www.gwrdc.com.au) websites.   

 

 


