Novel methods for the amelioration of smoke tainted wine

Kerry Wilkinson, Renata Ristic and Anthea Fudge The University of Adelaide

Life Impact The University of Adelaide

Aims of ARC Smoke Taint Project

In 2009, University of Adelaide established an ARC Linkage Project on smoke taint Industry partners: Yalumba Wine Company, Brown Brothers, Treasury Wine Estates, PIRSA

The impact of vineyard exposure to smoke on vine physiology and the composition of grapes and wine

Project Aims:

To identify vineyard management practices that minimise grapevine uptake of smoke.

To identify grape varieties less susceptible to the effects of smoke exposure (and therefore be suitable for planting in smoke-prone regions to manage the risk of smoke exposure).

To identify winery processing methods that minimise the concentration and sensory impact of smoke derived volatile organic compounds in finished wine.

To evaluate ultraviolet/visible/near-infrared/mid-infrared (UV/Vis/NIR/MIR) spectroscopy as a rapid analytical technique for the detection of smoke taint in juice and wine.

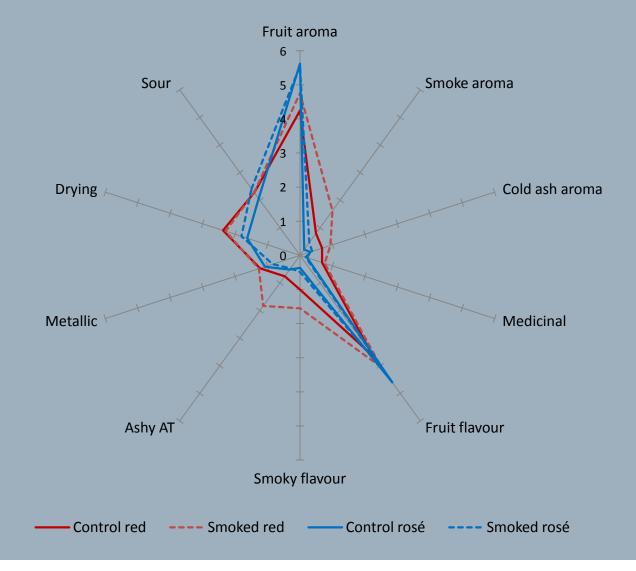
Effect of winemaking techniques on intensity of smoke taint in wine

Investigate the influence of winemaking on intensity of smoke taint in wine

- duration of skin contact
- influence of yeast selection
- addition of oak chips and tannins

Control and smoked Grenache grapes fermented, either

- 1) Rosé style 3 day cold soak at 0°C prior to fermentation
- 2) Red style fermentation on skins followed by malolactic fermentation



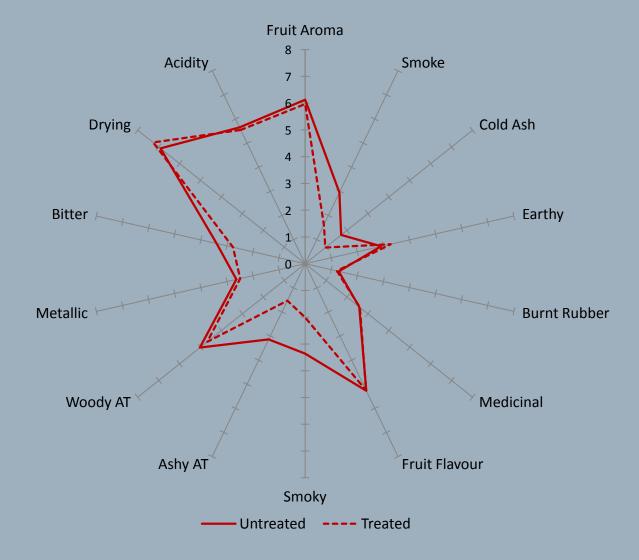
Effect of winemaking techniques on intensity of smoke taint in wine

Duration of skin contact influenced wine composition and the intensity of attributes

	Guaiacol (µg/L)	Guaiacol glycoconjugates (µg/L)
Rosé (control)	nd	22
Rosé (smoked)	2	204
Red (control)	trace	38
Red (smoked)	5	290

Effect of winemaking techniques on intensity of smoke taint in wine

Investigate the capacity of reverse osmosis/solid phase adsorption to remove smoke taint Smoke-affected Pinot Noir wines treated using pilot and commercial scale systems



Investigate the capacity of reverse osmosis/solid phase adsorption to remove smoke taint Smoke-affected Pinot Noir wines treated using pilot and commercial scale systems Significant reduction in volatile phenol content with treatment time

	Concentration (µg/L)					
	Guaiacol	4-Methyl guaiacol	4-Ethyl guaiacol	4-Ethyl phenol		
Untreated	49	36	294	391		
Treated (t = 0.5 h)	35	28	225	277		
Treated (t = 1 h)	27	23	190	214		
Treated (t = 2 h)	18	15	134	126		
Treated (t = 3 h)	13	11	94	78		

Minimal impact on other wine quality parameters

	рН	TA (g/L)	Alcohol (%, v/v)	Phenolics (au)	Colour density (au)	Colour hue
Untreated	3.31	5.6	14.3	69.24	7.68	0.83
Treated (t = 0.5 h)	3.34	5.5	14.4	70.51	7.82	0.84
Treated (t = 1 h)	3.26	5.6	14.4	71.98	7.98	0.84
Treated (t = 2 h)	3.22	5.6	14.4	73.04	7.97	0.84
Treated (t = 3 h)	3.21	5.5	14.4	75.39	8.09	0.84

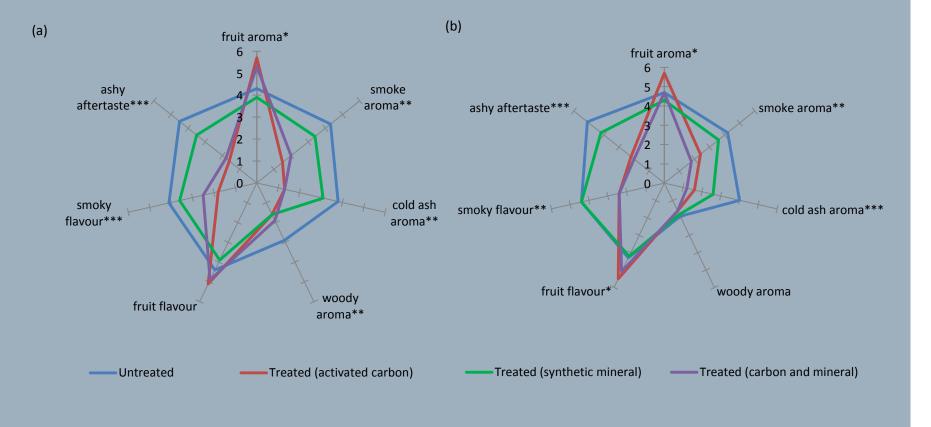
Glycoconjugate precursors remained after treatment, so potential for return of smoke taint

	Concentration (µg/L)			
	Guaiacol	4-Methyl guaiacol		
Untreated (0 months)	12	5		
Untreated (6 months)	12	3		
Untreated (12 months)	15	4		
Untreated (30 months)	16	4		
Treated (0 months)	3	trace		
Treated (6 months)	5	2		
Treated (12 months)	6	3		
Treated (30 months)	9	4		

Evaluation of commercial fining agents for amelioration of smoke taint

Evaluate capacity of fining agents to remove smoke taint from wine

Fining ag		
Active ingredient	Trade name	Dose (g/L)
egg albumin		0.4
potassium caseinate	Clarito® Spray Dry	0.3
activated carbon	FPS	1.0
isinglass	Premium [®] Fish	0.1
sodium bentonite 1	Plusgran® gel	4.0
PVPP	Polyclar® 10	0.5
gelatine	Instantgel 45	0.3
yeast cell walls 1	Biolees	0.4
silica sol/activated carbon	Toxicol	0.6
calcium bentonite	Microcol-Cl	4.0
sodium bentonite 2	Volclay	4.0
yeast cell walls 2	Biocell	0.4
synthetic mineral	BA/S-00-1A	2.0


Evaluation of commercial fining agents for amelioration of smoke taint

	(Concentrat	ion (µg/L))	- TA	total	colour	colour
Sample	guaiacol	4-methyl	total	syringol	(g/L)	phenolics	density	hue
		guaiacol	cresols			(au)	(au)	nue
Untreated (control)	24 ^a	7 ^a	15 ^c	36 ^a	5.0 ^a	64.0 ^{ab}	4.95 ^a	1.2
Treated egg albumin	24 ^a	7 ^a	15 ^c	35 ^{ab}	4.6 ^{cd}	60.1 ^{abcde}	4.55 ^d	1.2
Treated potassium caseinate	24 ^a	7 ^a	15 ^c	35 ^{ab}	4.8 ^b	61.4 ^{abcd}	4.80 ^b	1.2
Treated activated carbon	10 ^d	2°	5 ^f	14 ^d	4.5 ^d	52.4 ^e	4.50 ^d	1.2
Treated isinglass	24 ^a	7 ^a	16 ^b	35 ^{ab}	4.2 ^{ef}	61.8 ^{abcd}	4.20 ^{ef}	1.2
Treated sodium bentonite 1	23 ^{ab}	7 a	15°	33°	3.9 ^g	62.5 ^{abcd}	3.85 ^g	1.3
Treated PVPP	24 ^a	7 a	15°	35 ^{ab}	4.2 ^{ef}	53.6 ^{de}	4.20 ^{ef}	1.2
Treated gelatine	24 ^a	7 ^a	15°	36 ^a	3.5 ^h	55.5 ^{cde}	3.50 ^h	1.3
Treated yeast cell walls 1	24 ^a	7 ^a	16 ^b	36 ^a	4.3 ^e	59.5 ^{abcde}	4.30 ^e	1.2
Treated silica sol/activated carbon	22 ^{bc}	6 ^b	14 ^d	33°	4.5 ^d	66.3 ^a	4.50 ^d	1.2
Treated calcium bentonite	22 ^{bc}	6 ^b	14 ^d	33°	4.1 ^f	58.1 ^{bcde}	4.10 ^f	1.3
Treated sodium bentonite 2	23 ^{ab}	6 ^b	15°	34 ^{bc}	3.9 ^g	64.4 ^{ab}	3.85 ^g	1.3
Treated yeast cell walls 2	24 ^a	7 a	23 ^a	35 ^{ab}	4.6 ^{cd}	62.5 ^{abcd}	4.60 ^{cd}	1.2
Treated synthetic mineral	21°	5 ^c	13 ^e	15 ^d	4.7 ^{bc}	59.7 ^{abcde}	4.70 ^{bc}	1.2
P	<0.001	<0.001	<0.001	<0.001	<0.001	<0.05	<0.001	ns

Evaluation of commercial fining agents for amelioration of smoke taint

	Concentration (µg/L)				- TA	total	colour	colour
Sample	guaiacol	4-methyl	total	syringol	(g/L)	phenolics	density	hue
	gualator	guaiacol	cresols	Synngor	(9/⊏)	(au)	(au) (au)	nuc
Cabernet Sauvignon								
Untreated (control)	18 ^a	3 ^a	7 ^a	18ª	7.1 ^a	55.0ª	8.8	0.7
Treated activated carbon	8 ^c	1 ^c	2°	7 ^c	6.9 ^b	51.9 ^b	8.5	0.7
Treated synthetic mineral	15 ^b	2 ^b	6 ^b	9 ^b	6.9 ^b	53.1 ^{ab}	9.1	0.7
Treated carbon and mineral	7 ^d	tr	2°	5 ^d	6.8 ^c	49.4 ^c	9.1	0.7
Р	<0.001	<0.001	<0.001	<0.001	<0.001	<0.01	ns	ns
Merlot								
Untreated (control)	17 ^a	3 ^a	6 ^a	15 ^a	6.0 ^a	48.1 ^a	7.1 ^b	0.7
Treated activated carbon	8 ^c	1 ^b	2°	6 ^c	6.0 ^a	44.1 ^b	6.9 ^b	0.7
Treated synthetic mineral	15 ^b	3 ^a	4 ^b	7 ^b	5.8 ^{ab}	47.7ª	7.6 ^a	0.7
Treated carbon and mineral	7 ^d	1 ^b	1 ^d	4 ^d	5.7 ^b	44.4 ^b	7.0 ^b	0.7
P	<0.001	<0.001	<0.001	<0.001	<0.05	<0.001	<0.001	ns

Evaluation of commercial fining agents for amelioration of smoke taint

Acknowledgements

Kerry Pinchbeck Mathilde Schiettecatte Staff and students from the University of Adelaide and the Australian Wine Research Institute

Yoji Hayasaka Gayle Baldock Con Simos Patricia Osidacz Leigh Francis Gemma West

memstar

David Wollan

Louisa Rose and the Yalumba Wine Company Industry Partners involved in an ARC funded Linkage Project

Grape and Wine Research and Development Corporation