

Understanding how smoke compounds get into fruit and wine

Dr Nicole Cain

Research Scientist Centre for Expertise in Smoke Taint Research

DEPARTMENT OF PRIMARY INDUSTRIES future farming systems research

Smoke in the Vineyard

During a 'smoke event' there are <u>many factors</u> within the vineyard that can affect the level of taint in wine

e.g.

- Phenological stage of berry growth
- Varietal differences
- Fuel types

Research Questions

How do smoke related chemicals enter the grapevine?

Where are they located?

Can smoke taint compounds move?

e.g. from leaf to fruit from the roots

Mode of Entry - Grapes

PRIMAR

Location within Berries

Guaiacol Glycoside Analysis of Smoked Berries:

- Separation of berries into skin, pulp and seeds
 - no significant difference between skin and pulp (seed levels minimal)
- Extraction techniques of gylcosides from smoked berries
 - whole berry homogenate vs supernatant juice
 - lower levels of guaiacol glycosides in juice

Dungey, K. et al. Food Chemistry, 2011, 126, 801

Localisation of Guaiacol Glycosides in Grapes

- Treated leaves and berries with mixture deuterated (d₃) and undeuterated (d₀) guaiacol
- Analysed skin and pulp of berries
- All d₀ and d₃ congugates of guaiacol were present in both skins and pulp
- Seemed to be non-specifically distributed

Hayasaka. Y, et al. J. Agric. Food Chem. 2010, 58, 2076

Grape Wax Bloom

- Investigated the influence of the wax coating on the berry surface on the uptake on smoke compounds
- Enhanced uptake of guaiacol in grapes smoked after wax coating was removed (chloroform) relative to control (wax intact)
- Wax could provide protective mechanism for berry from smoke uptake

Kennison, K. GWRDC Report, 2009

Mode of Entry - Leaves

DEPARTMENT OF | future farming PRIMARY INDUSTRIES | systems research

Leaves & Shoot Feeding Experiments

- 1% and 2% aqueous mix of guaiacol standard
- Vines 'fed' guaiacol through leaves and decapitated shoots
- Guaiacol level <u>30 50 times higher</u> than control
- Demonstrates transportation between leaves and shoots into berries

Whiting, J and Kristic, M, DPI Report, 2007

Smoke and Smoke-Water Spray

- Applied to <u>separate</u> grapevine components
 - ie bunches only, leaves only
- Analysed for guaiacol and 4-methyl guaiacol
- Free forms were not detected
- Acid hydrolyses

 Λ levels leaves of smoke & smoke water applications Λ levels in smoked bunches Not detected in bunches sprayed with smoke water

Kennison, K. GWRDC Report, 2009

Stable Isotope Tracer Techniques

- Used to identify and quantify <u>guaiacol conjugates</u> present in leaves and grapes exposed to guaiacol
- Showed that leaves take up guaiacols
 - only trace quantities are translocated to berries
 - rate of translocation was slow.
- Demonstrates biotransformation of guaiacol into its glycosides

Hayasaka. Y, et al. J. Agric. Food Chem. 2010, 58, 2076

Vine Canopy Leaf Area Correlations

Negatively correlated with concentration of phenols in wine

- If the primary mode of uptake is through leaves, expect to see positive relationship
- Suggests direct uptake from berries
- Denser canopy could have shielding effect
 - protecting berries from particulate matter

Kelly, D. et al. Food Chemistry, in press

2012 Experimental Smoking

Custom Built Smoker

DEPARTMENT OF PRIMARY INDUSTRIES

future farming systems research

2012 Experimental Smoking

Shiraz DPI Irymple, Victoria

Chamber fully enclosed over vine

DEPARTMENT OF | future farming PRIMARY INDUSTRIES | systems research

Smoking: Bunches vs Vine

Trays of harvested grapes

Grapes still on the vine

Control grapes

1 hour barley straw smoker 330 – 650 °C chamber 30 – 31 °C outside: 25 °C

> DEPARTMENT OF PRIMARY INDUSTRIES

future farming systems research

Total Phenol Concentrations

GC-MS analysis for 22 free and bound smoke taint compounds

Acid Hydrolysis for bound analytes

DEPARTMENT OF | future farming MARY INDUSTRIES | systems researc

Future Work

Irrigation treatments,

Test absorption through roots

Management Options

Anti-transpirants - protect against leaf entry

Leaf Removal

Modify irrigation treatments - prevent entry & translocation

Hand harvesting vs machine

DEPARTMENT OF PRIMARY INDUSTRIES future farming systems research

Smoke Taint Team

Mildura

- Dr Mark Downey, Director
- Dr Nicole Cain, Research Scientist
- Mr Peter Rogers, Experimental Winemaker
- Mr Fred Hancock, Senior Technical Officer
- Mr Joel Beloy, Technician

Melbourne

- Dr Craige Trenerry, Senior Research Scientist
- Dr David Allen, Senior Analytical Chemist
- Mr Tim Plozza, Analytical Chemist
- Ms Kristen Pitt, Project Support Officer
- Mr Subhash Sharma, Spatial Information Scientist

Rutherglen

Mr Ricky James, Extension Specialist

DEPARTMENT OF

future farming