#### Smoke taint: the latest research from the University of Adelaide Professor Kerry Wilkinson The University of Adelaide kerry.wilkinson@adelaide.edu.au

## Smoke taint research at the University of Adelaide



Sensors for real-time monitoring of vineyard exposure to smoke

# Smoke monitoring project:

Attentis Technologies develop environmental sensors that monitor air quality as particulate matter (PM) concentrations, accessible online, in real-time

#### www.attentistechnologies.com





# Smoke monitoring project: smoke density field trial









## Smoke monitoring project: smoke density field trial



















|                  | guaiacol | cresols | syringol |
|------------------|----------|---------|----------|
| Control          | 1        | nd      | 6        |
| Wheat A          | 3        | 3       | 12       |
| Wheat B (upwind) | 1        | nd      | 6        |
| Oats A           | 4        | 3       | 18       |
| Oats B           | 1        | nd      | 7        |



# Smoke monitoring project:

Latrobe Valley Information Network

www.lvin.org



#### Evaluation of strategies for mitigation of smoke taint

#### Strategies evaluated for mitigation of smoke taint

In the vineyard...

Defoliation

Washing/misting grapes

Hand-harvesting

Protective sprays (e.g. kaolin)\*

Protective coverings\*

🖄 molecules

MDPI

Review

Techniques for Mitigating the Effects of Smoke Taint While Maintaining Quality in Wine Production: A Review

Ysadora A. Mirabelli-Montan<sup>1</sup>, Matteo Marangon<sup>1,\*</sup>, Antonio Graça<sup>2</sup>, Christine M. Mayr Marangon<sup>1</sup> and Kerry L. Wilkinson<sup>3,4</sup>

In the winery...

Reduced skin contact

Different yeast strains

Oak/tannin addition

Post-harvest ozonation\*

Distillation\*

Adsorbents (e.g. carbon, MIPs) \*

Membrane filtration\*

Activated carbon fabric as a protective covering to prevent smoke contamination of grapes

#### Activated carbon fabric project: preliminary field trial



## Activated carbon fabric project: preliminary field trial

|               | guaiacol | cresols | syringol |
|---------------|----------|---------|----------|
| Control       | nd       | nd      | nd       |
| Smoke         | 21       | 16      | 16       |
| Plastic bag   | 11       | 5.0     | 5.3      |
| Paper bag     | 10       | 8.5     | 2.0      |
| AC fabric bag | 1.3      | nd      | nd       |



## Activated carbon fabric project: 'box' trial (grapes)



# Activated carbon fabric project: 'box' trial (grapes)

|                  | guaiacol | cresols | syringol |
|------------------|----------|---------|----------|
| Control          | nd       | nd      | nd       |
| Smoke            | 231      | 194     | 80       |
| Paper bag        | 75       | 48      | 1        |
| AC fabric bag    | 5        | 5       | nd       |
| Kaolin           | 183      | 158     | 58       |
| Anti-transpirant | 239      | 224     | 88       |



# Activated carbon fabric project: 'box' trial (wine)

|                       | guaiacol | cresols | syringol |
|-----------------------|----------|---------|----------|
| Control               | 2        | 1       | 6        |
| Smoke                 | 16       | 22      | 21       |
| AC fabric bag (felt)  | 3        | 3       | 7        |
| AC fabric bag (light) | 3        | 2       | 7        |
| AC fabric bag (heavy) | 3        | 3       | 6        |

## Activated carbon fabric project: 'box' trial (wine)

|                       | guaiacol | cresols | syringol |
|-----------------------|----------|---------|----------|
| Control               | 2        | 1       | 6        |
| Smoke                 | 16       | 22      | 21       |
| AC fabric bag (felt)  | 3        | 3       | 7        |
| AC fabric bag (light) | 3        | 2       | 7        |
| AC fabric bag (heavy) | 3        | 3       | 6        |



-Control ----Smoke

## Activated carbon fabric project: 'box' trial (wine)





fruit A\*

Peter Michael winery now pursuing commercialisation

#### TASTING







#### Sample 1 Control Wine

Sample 2 Smoke Wine Sample 3 ACF Wine

# TASTING

| guaiacol | cresols | syringol | guaiacol | cresols | syringol | guaiacol | cresols | syringol |
|----------|---------|----------|----------|---------|----------|----------|---------|----------|
| 1        | nd      | 2        | 100      | 55      | 36       | 3        | 1       | 6        |
| Sa       | mple '  | 1        | S        | ample   | 2        | S        | ample   | 3        |
| Cont     | trol Wi | ne       | Sm       | oke W   | line     | A        | CF Wi   | ne       |
|          |         |          |          |         |          |          |         |          |





|                 | guaiacol | cresols | syringol |
|-----------------|----------|---------|----------|
| Control         | 1        | nd      | 3        |
| Smoke           | 25       | 14      | 7        |
| Smoke + Viscose | 14       | 8       | 3        |
| Smoke + ACF     | 7        | 5       | 4        |













Post-harvest ozone treatment of grapes to mitigate the intensity of smoke taint in wine

# Ozonation project: Merlot trial (moderate smoke exposure)

|                              | guaiacol | cresols | syringol |
|------------------------------|----------|---------|----------|
| Control                      | 1.0      | nd      | 3.0      |
| Smoke                        | 15       | 7.7     | 4.7      |
| Smoke + 1 ppm $O_3$          | 12       | 5.7     | 4.0      |
| Smoke + 3 ppm O <sub>3</sub> | 14       | 7.4     | 4.3      |

|                              | guaiacol<br>glycosides | cresol<br>glycosides | syringol<br>glycosides |
|------------------------------|------------------------|----------------------|------------------------|
| Control                      | 9.4                    | 20                   | 3.4                    |
| Smoke                        | 295                    | 280                  | 240                    |
| Smoke + 1 ppm O <sub>3</sub> | 232                    | 217                  | 213                    |
| Smoke + 3 ppm O <sub>3</sub> | 329                    | 314                  | 273                    |

# Ozonation project: Merlot trial (moderate smoke exposure)

|                     | guaiacol | cresols | syringol |
|---------------------|----------|---------|----------|
| Control             | 1.0      | nd      | 3.0      |
| Smoke               | 15       | 7.7     | 4.7      |
| Smoke + 1 ppm $O_3$ | 12       | 5.7     | 4.0      |
| Smoke + 3 ppm $O_3$ | 14       | 7.4     | 4.3      |

|                              | guaiacol<br>glycosides | cresol<br>glycosides | syringol<br>glycosides |
|------------------------------|------------------------|----------------------|------------------------|
| Control                      | 9.4                    | 20                   | 3.4                    |
| Smoke                        | 295                    | 280                  | 240                    |
| Smoke + 1 ppm O <sub>3</sub> | 232                    | 217                  | 213                    |
| Smoke + 3 ppm $O_3$          | 329                    | 314                  | 273                    |
# Ozonation project: Merlot trial (moderate smoke exposure)

|                              | guaiacol | cresols | syringol |
|------------------------------|----------|---------|----------|
| Control                      | 1.0      | nd      | 3.0      |
| Smoke                        | 15       | 7.7     | 4.7      |
| Smoke + 1 ppm O <sub>3</sub> | 12       | 5.7     | 4.0      |
| Smoke + 3 ppm O <sub>3</sub> | 14       | 7.4     | 4.3      |

|                              | guaiacol<br>glycosides | cresol<br>glycosides | syringol<br>glycosides |
|------------------------------|------------------------|----------------------|------------------------|
| Control                      | 9.4                    | 20                   | 3.4                    |
| Smoke                        | 295                    | 280                  | 240                    |
| Smoke + 1 ppm O <sub>3</sub> | 232                    | 217                  | 213                    |
| Smoke + 3 ppm $O_3$          | 329                    | 314                  | 273                    |



### Ozonation project: Cabernet trial (heavy smoke exposure)

|                     | guaiacol | cresols | syringol |
|---------------------|----------|---------|----------|
| Control             | ~1.0     | nd      | 2.3      |
| Smoke               | 30       | 21      | 6.3      |
| Smoke + 1 ppm $O_3$ | 23       | 18      | 5.3      |

|                     | guaiacol<br>glycosides | cresol<br>glycosides | syringol<br>glycosides |
|---------------------|------------------------|----------------------|------------------------|
| Control             | 9.8                    | 4.3                  | 12.2                   |
| Smoke               | 340                    | 117                  | 614                    |
| Smoke + 1 ppm $O_3$ | 258                    | 100                  | 473                    |

# Ozonation project: Cabernet trial (heavy smoke exposure)

|                     | guaiacol   | cresols              | syringol               |
|---------------------|------------|----------------------|------------------------|
| Control             | ~1.0       | nd                   | 2.3                    |
| Smoke               | 30         | 21                   | 6.3                    |
| Smoke + 1 ppm $O_3$ | 23         | 18                   | 5.3                    |
|                     |            |                      |                        |
|                     | guaiacol   | crocol               |                        |
|                     | glycosides | cresol<br>glycosides | syringol<br>glycosides |
| Control             | U          |                      |                        |
| Control<br>Smoke    | glycosides | glycosides           | glycosides             |



Control —— Smoke – – – Smoke + Ozone

Amelioration of smoke taint in wine using novel adsorbents and membrane filtration

**S4**I

302

Amelioration of smoke taint in wine

#### Australian Journal of Grape and Wine Research 18, 302–307, 2012

#### Amelioration of smoke taint in wine by reverse osmosis and solid phase adsorption

#### A.L. FUDGE<sup>1</sup>, R. RISTIC<sup>1</sup>, D. WOLLAN<sup>2</sup> and K.L. WILKINSON<sup>1</sup>

#### Abstract

Background and Aims: Wines made from grapes harvested from vineyards exposed to bushfire smoke can exhibit objectionable 'smoky', 'cold ash', 'medicinal' and 'ashy' aroma and flavour characters. This study evaluated a combined reverse osmosis and solid phase adsorption process as a potential amelioration method for the treatment of smoke-tainted wines.

Methods and Results: Smoke-tainted wines were treated using either pilot or commercial scale reverse osmosis systems and the chemical composition and sensory properties of wine compared before and after treatment. The concentrations of smoke-derived volatile phenols, including marker compounds, gualacol and 4-methylgualacol, decreased significantly with treatment. As a consequence, diminished smoke-related sensory attributes enabled treated wines to be readily differentiated from untreated wines. However, the taint was found to slowly return with time, likely because of hydrolysis of glycoconjugate precursors, which were not removed during the treatment process.

Conclusions: Reverse osmosis and solid phase adsorption reduced the concentration of smoked-derived volatile phenols and improved the sensory attributes of smoke-tainted wines.

Significance of the Study: This is the first study to evaluate the amelioration of smoke taint in wine using reverse osmosis and solid phase adsorption.

Keywords: amelioration, guatacol, reverse osmosis, smoke taint, wine

#### Introduction

Aroma is an important aspect of wine quality and has therefore been the subject of considerable research. Indeed, several hundred volattle compounds have been identified in wine to date. These compounds contribute to the complexity and varietal character of wine and can originate from grapes, the action of yeast during fermentation, oak wood during barrel maturation or in the bottle with aging (Williams et al. 1981, Günata et al. 1985, Winterhalter et al. 1990, Pollnitz et al. 2004). However, not all volatile compounds make a destrable contributton to wine aroma. Some volatiles are indicative of winemaking faults; e.g. the 'bruised apple' and 'vinegar' characters associated with excessive concentrations of acetaldehyde and acetic acid due to oxidation and lactic bacteria spotlage (volatile acidity), respectively (Ribéreau-Gayon et al. 2000). In other cases, contamination by exogenous volatiles can lead to taints in wine: 2,4,6-trichloroanisole, for example, is considered to contribute to the 'musty' attribute associated with cork taint (Buser et al. 1982).

In recent years, the potential for smoke to taint grapes and wine has been a concern for some winemakers, following the occurrence of significant bushfires in the vicinity of wine grapegrowing regions. Kennison et al. (2007) demonstrated the presence of several smoke-derived volatile phenols, including guatacol and 4-methylgualacol, in wines made from smokeaffected grapes. These wines were found to exhibit objectionable 'smoky', 'cold ash', 'medicinal' and 'ashy' aroma and flavour characters (Kennison et al. 2007), with the intensity of smoke-

related sensory attributes dependent on the timing and duration of grapevine smoke exposure (Kennison et al. 2009). Vineyard exposure to smoke cannot be readily predicted or prevented, but can have a significant financial impact on grape and wine production. As such, methods which reduce the concentration of smoke-derived volatile compounds in wine, thereby mitigating the effects of smoke exposure, would be of benefit to grape growers and winemakers. Ristic et al. (2011) investigated the effect of different winemaking techniques on the extent of smoke taint in wine and found the duration of skin contact, choice of yeast strain and addition of oak chips or tannins influenced smoke-related sensory properties. These techniques can be applied by winemakers when processing smoke-affected grapes, but do not address the issue of smoke taint in wine.

Reverse osmosis is a filtration process involving diffusion across a semi-permeable membrane against a concentration gradient (Paulsen et al. 1985), in which separation efficiency relies on both size exclusion and solution-diffusion mechanisms (Cuperus and Nijhuis 1993). Reverse osmosis is routinely used for water purification and desalination (Madaeni 1999), with an increasing number of applications being reported within food and beverage industries, e.g. the preparation of milk (Glover 1971) and fruit juice concentrates (Paulsen et al. 1985, Kane et al. 1995). Within the wine industry, reverse osmosis has been used to manipulate wine alcohol content, volatile acidity and acidification through concentration of grape must (Duitschaever et al. 1991) and wine (But et al. 1988, Massot et al. 2008). Reverse osmosis has also been coupled with solid

#### Amelioration of smoke taint in wine by treatment with commercial fining agents

#### A.L. FUDGE<sup>1</sup>, M. SCHIETTECATTE<sup>1</sup>, R. RISTIC<sup>1</sup>, Y. HAYASAKA<sup>2</sup> and K.L. WILKINSON<sup>1</sup>

#### Abstract

Background and Aims: Fermentation of smoke-affected grapes can lead to wines that exhibit objectionable smoke-related sensory attributes, i.e. smoke taint. Fining agents are routinely used at different stages of the winemaking process to address constituents that are considered to adversely affect juice or wine quality. This study aimed to evaluate the efficacy of commercial fining agents in reducing the concentration of volatile phenols and the intensity of sensory attributes associated with smoke-tainted wine.

Methods and Results: Smoke-affected wines were treated with a range of fining agents, two of which, an activated carbon and a synthetic mineral, were found to appreciably ameliorate the taint. Treated wines contained a significantly lower level of smoke-derived volatile phenois and exhibited less intense 'smoke' and 'cold ash' aromas, 'smoky' flavour and 'ashy' aftertaste, compared with that of untreated (control) wines; with little or no impact on wine colour. Conclusions: Selected fining agents can ameliorate smoke taint in wine. Whereas most fining agents showed poor specificity towards the wine components responsible for smoke taint, some, an activated carbon in particular, were highly effective.

Significance of the Study: This research identifies a treatment that can be used to mitigate the impact of grapevine exposure to smoke on wine composition and sensory properties.

Keywords: activated carbon, amelioration, fining agent, gualacol, smoke taint, wine

#### Introduction

Fining agents are routinely used at different stages of winemaking to address constituents that are considered to adversely affect juice or wine quality. For example, gelatine, isinglass, silicon dioxide and bentonite have been used to facilitate the clarification of juice and wine, while egg albumin, casein, polyvinylpolypyrrolidone (PVPP) and activated carbon can remove the phenolic compounds associated with bitterness, astringency and browning (Iland et al. 2004b). Fining involves the addition of one or more adsorptive substrates to juice or wine to bind certain components, thus reducing their concentration (Castellari et al. 2001). Binding occurs as a result of complex van der Waals, resonance, electrostatic and hydrogen bonding interactions (Furuya et al. 1997) between the adsorbent (i.e. the fining agent) and the adsorbate (i.e. the component in juice or wine to be removed). Following treatment, fining agents will either settle or precipitate, allowing clear juice or wine to be separated by racking, filtration or centrifugation (Iland et al. 2004b).

Fining agents have also been used to remove volatile compounds responsible for the occurrence of various off-odours and flavours in wine. The remedial treatment of wine affected by *Harmonia axyridis* (multicoloured Astan lady beetle) taint was reported by Pickering and co-workers (2006). The concentration of 2-isopropyl-3-methoxypyrazine, derived from lady beetles present in grape bunches at the time of harvest, was reduced in white wine following the addition of activated carbon. Activated carbon and PVPP have also been shown to reduce the concentration of 4-ethylphenol and 4-ethylguatacol in wine (Lisanti et al. 2008): i.e. the volatile phenols associated with *Bretianomyces/Dekkera* spollage (Chatonnet et al. 1992). The adsorptive properties of oenological fining agents have even been exploited for the removal of ochratoxin A from wines (Castellari et al. 2001, Gambuti et al. 2005, Kurtbay et al. 2008).

In the last 5 years, an increasing number of studies concerning grapevine exposure to smoke and the occurrence of smoke taint in grapes and wine have been published in the scientific literature. Several studies have described the compositional and sensory implications of grapevine smoke exposure for grapes and wine (Kennison et al. 2007, 2008, Sheppard et al. 2009, Hayasaka et al. 2010a,b,c) and the influence of grapevine phenology on the extent of smoke taint in wine (Kennison et al. 2009, 2011). Additionally, a range of chromatographic and spectroscopic methods has been developed for the identification and screening of smoke-tainted grapes and wine (Dungey et al. 2011, Singh et al. 2011, Wilkinson et al. 2011, Fudge et al. 2012). To date, however, only two studies have investigated methods by which the impact of grapevine exposure to smoke on the chemical and sensory profiles of wine can be mitigated. Ristic and co-workers reported the influence of winemaking techniques, such as the duration of skin contact, yeast selection and the use of oak and tannin additives, on the concentration of smoke-derived volatile phenols and intensity of smoke-related sensory attributes in wines made from smoke-affected grapes (Ristic et al. 2011). The capacity of reverse osmosis and solidphase adsorption for the amelioration of smoke-tainted wine has also been demonstrated (Fudge et al. 2011); with treated wines shown to contain a reduced level of volatile phenols and dimin-Ished 'smoke' and 'ash' aromas and flavours, compared with that of untreated wines. While these studies give winemakers some options for managing smoke-affected grapes and wine, further

# Novel adsorbents: molecularly imprinted polymers (MIPs)

MIPs are mm-sized polymerisation products, with high surface area:size and adsorptive properties

Designed for selective removal of target molecules, e.g. volatile phenols



#### Novel adsorbents project: screening trial

2020 smoke-affected Chardonnay treated with adsorbents for 1, 3 or 7 days



# Novel adsorbents project: adsorption trial

| Adsorbent              | dose            | guaiacol | cresols | syringol |
|------------------------|-----------------|----------|---------|----------|
| Chardonnay             | 2 g/L, 24 hours | 31       | 33      | 39       |
| Chardonnay + Carbon 1  | 2 g/L, 24 hours | 28       | 27      | 35       |
| Chardonnay + Carbon 2  | 2 g/L, 24 hours | 28       | 29      | 33       |
| Chardonnay + Carbon 3  | 2 g/L, 24 hours | 27       | 29      | 33       |
| Chardonnay + VAF Resin | 20 g/L, 2 hours | 23       | 25      | 29       |
| Chardonnay + MIPs      | 10 g/L, 6 hours | 19       | 17      | 28       |

### Novel adsorbents project: adsorption trial

| Adsorbent      | guaiacol | cresols | syringol |
|----------------|----------|---------|----------|
| Chardonnay     | 31       | 33      | 39       |
| Ch + Carbon 1  | 28       | 27      | 35       |
| Ch + Carbon 2  | 28       | 29      | 33       |
| Ch + Carbon 3  | 27       | 29      | 33       |
| Ch + VAF Resin | 23       | 25      | 29       |
| Ch + MIPs      | 19       | 17      | 28       |



#### TASTING







#### Sample 1 Smoke Wine

Sample 2 Smoke Wine + MIPs Sample 3 Smoke Wine + Resin

# Novel adsorbents project: ongoing R&D Optimisation of resin and MIP treatments direct addition vs column dose rate/bed volumes duration/flow rate regeneration

Additionally, use of adsorbents in combination with membrane filtration



| Adsorbent      | guaiacol | cresols | syringol |
|----------------|----------|---------|----------|
| Chardonnay     | 32       | 40      | 41       |
| UF5 permeate   | 30       | 39      | 38       |
| UF5 retentate  | 29       | 39      | 38       |
| UF10 permeate  | 28       | 36      | 35       |
| UF10 retentate | 29       | 39      | 37       |
| UF20 permeate  | 29       | 37      | 38       |
| UF20 retentate | 29       | 37      | 37       |

| Adsorbent      | guaiacol | cresols | syringol | GuRu | 4MGRu | PhRu | CrRu | SyrGB | 4MSyrGB |
|----------------|----------|---------|----------|------|-------|------|------|-------|---------|
| Chardonnay     | 32       | 40      | 41       | 8    | 17    | 2    | 3    | 468   | 37      |
| UF5 permeate   | 30       | 39      | 38       | 6    | 12    | 2    | 2    | 280   | 20      |
| UF5 retentate  | 29       | 39      | 38       | 24   | 52    | 6    | 7    | 1467  | 138     |
| UF10 permeate  | 28       | 36      | 35       | 7    | 14    | 2    | 2    | 368   | 26      |
| UF10 retentate | 29       | 39      | 37       | 16   | 35    | 4    | 5    | 910   | 79      |
| UF20 permeate  | 29       | 37      | 38       | 7    | 16    | 2    | 2    | 423   | 32      |
| UF20 retentate | 29       | 37      | 37       | 12   | 25    | 3    | 4    | 681   | 57      |

| Adsorbent         | guaiacol | cresols | syringol | GuRu | 4MGRu | PhRu | CrRu | SyrGB | 4MSyrGB |
|-------------------|----------|---------|----------|------|-------|------|------|-------|---------|
| Chardonnay        | 32       | 40      | 41       | 8    | 17    | 2    | 3    | 468   | 37      |
| UF5 permeate      | 30       | 39      | 38       | 6    | 12    | 2    | 2    | 280   | 20      |
| UF5 retentate     | 29       | 39      | 38       | 24   | 52    | 6    | 7    | 1467  | 138     |
| UF10 permeate     | 28       | 36      | 35       | 7    | 14    | 2    | 2    | 368   | 26      |
| UF10 retentate    | 29       | 39      | 37       | 16   | 35    | 4    | 5    | 910   | 79      |
| UF20 permeate     | 29       | 37      | 38       | 7    | 16    | 2    | 2    | 423   | 32      |
| UF20 retentate    | 29       | 37      | 37       | 12   | 25    | 3    | 4    | 681   | 57      |
| UF5+NF permeate   | 28       | 34      | 35       | 0    | 0     | 0    | 0    | 3     | 0       |
| UF5+NF retentate  | 27       | 33      | 42       | 46   | 110   | 13   | 18   | 1835  | 191     |
| UF10+NF permeate  | 26       | 32      | 28       | 0    | 0     | 0    | 0    | 2     | 0       |
| UF10+NF retentate | 25       | 29      | 37       | 63   | 152   | 18   | 24   | 2450  | 269     |
| UF20+NF permeate  | 28       | 34      | 34       | 0    | 0     | 0    | 0    | 4     | 0       |
| UF20+NF retentate | 27       | 32      | 41       | 60   | 147   | 17   | 23   | 2498  | 289     |

Amelioration of smoke tainted wine via spinning cone column distillation

#### Spinning Cone Column distillation project:



#### Spinning Cone Column distillation project:



|          | guaiacol | cresols | syringol | GuR | MGuR        | CrR              | PhR                           | SyGB           | MSyGB         |
|----------|----------|---------|----------|-----|-------------|------------------|-------------------------------|----------------|---------------|
| ShS wine | 48       | 29      | 12       | 41  | 37          | 27               | 26                            | 112            | 7             |
|          |          |         |          |     |             |                  | fruit A                       |                |               |
|          |          |         |          |     |             | acidity          | 6<br>5                        | smoke A        |               |
|          |          |         |          |     | motallia AT |                  | - /                           | /              | old ash       |
|          |          |         |          |     | metallic AT |                  | 3                             |                | olu asti      |
|          |          |         |          |     |             |                  | $^{2}$                        |                |               |
|          |          |         |          | d   | rying AT    |                  |                               |                | — burnt rubbe |
|          |          |         |          |     |             | $\times$         |                               |                |               |
|          |          |         |          |     | woody AT    |                  |                               |                | medicinal A   |
|          |          |         |          |     |             |                  |                               | $\overline{\}$ |               |
|          |          |         |          |     | ashy AT     | /                |                               | fruit F        |               |
|          |          |         |          |     |             | /<br>medicinal F | \<br>smo                      | oky F          |               |
|          |          |         |          |     |             | _                | <ul> <li>Untreated</li> </ul> |                |               |

|                      | guaiacol | cresols | syringol |
|----------------------|----------|---------|----------|
| ShS wine             | 48       | 29      | 12       |
| 1% strip             | 50       | 28      | 13       |
| 14% strip            | 52       | 30      | 15       |
| 28% strip            | 46       | 29      | 18       |
| 1% strip condensate  | 6        | nd      | nd       |
| 14% strip condensate | 7        | 1       | nd       |
| 28% strip condensate | 16       | 5       | nd       |

|                      | guaiacol | cresols | syringol | GuR | MGuR | CrR | PhR | SyGB | MSyGB |
|----------------------|----------|---------|----------|-----|------|-----|-----|------|-------|
| ShS wine             | 48       | 29      | 12       | 41  | 37   | 27  | 26  | 112  | 7     |
| 1% strip             | 50       | 28      | 13       | 40  | 34   | 24  | 26  | 107  | 7     |
| 14% strip            | 52       | 30      | 15       | 47  | 42   | 28  | 32  | 127  | 8     |
| 28% strip            | 46       | 29      | 18       | 55  | 51   | 35  | 38  | 152  | 11    |
| 1% strip condensate  | 6        | nd      | nd       | nd  | nd   | nd  | nd  | nd   | nd    |
| 14% strip condensate | 7        | 1       | nd       | nd  | nd   | nd  | nd  | nd   | nd    |
| 28% strip condensate | 16       | 5       | nd       | nd  | nd   | nd  | nd  | nd   | nd    |

|                      | guaiacol | cresols | syringol |
|----------------------|----------|---------|----------|
| ShS wine             | 48       | 29      | 12       |
| 1% strip             | 50       | 28      | 13       |
| 14% strip            | 52       | 30      | 15       |
| 28% strip            | 46       | 29      | 18       |
| 1% strip condensate  | 6        | nd      | nd       |
| 14% strip condensate | 7        | 1       | nd       |
| 28% strip condensate | 16       | 5       | nd       |





| RED JUICE PROCESSING | ED JUICE PROCESS | ING |  |
|----------------------|------------------|-----|--|
|----------------------|------------------|-----|--|

|                         | guaiacol | cresols | syringol | GuR | SyrGB |
|-------------------------|----------|---------|----------|-----|-------|
| red juice               | 10       | 6       | nd       | 19  | 85    |
| clarified red juice     | 9        | 6       | nd       | 19  | 84    |
| condensate (pre-IEX)    | 42       | 23      | 5        | nd  | nd    |
| condensate (post-IEX)   | 1        | nd      | nd       | nd  | nd    |
| reconstituted red juice | 2        | 1 [     | 22       | 20  | 62    |
| red wine                | 4        | 3       | 30       | na  | na    |



Transformation of smoke tainted wine into spirit via distillation

# Distillation project: base wine

|      | guaiacol | cresols | syringol | GuR      | MGuR      | CrR                       | PhR          | SyGB                                                                                                                                               | MSyGB         |
|------|----------|---------|----------|----------|-----------|---------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Wine | 53       | 53      | 10       | 7        | 9         | 8                         | 5            | 35                                                                                                                                                 | 3             |
|      |          |         |          |          |           | fı                        | ruit A       |                                                                                                                                                    |               |
|      |          |         |          |          | bitternes | 5                         |              | , smoke A                                                                                                                                          |               |
|      |          |         |          |          |           | 4                         |              | /                                                                                                                                                  |               |
|      |          |         |          | met      | allic AT  | 3                         |              | cc                                                                                                                                                 | ld ash        |
|      |          |         |          |          |           | 2                         |              | $\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$ |               |
|      |          |         |          | druing A | -         | $\mathbf{X}^{\mathbf{A}}$ |              |                                                                                                                                                    | — burnt rubbe |
|      |          |         |          | drying A |           |                           |              |                                                                                                                                                    |               |
|      |          |         |          |          |           | $\sim$                    |              |                                                                                                                                                    |               |
|      |          |         |          | woody    | AT        |                           |              |                                                                                                                                                    | medicinal A   |
|      |          |         |          |          |           |                           |              | $\backslash$                                                                                                                                       |               |
|      |          |         |          |          | ashy AT   |                           | $\checkmark$ | fruit F                                                                                                                                            |               |
|      |          |         |          |          | asity AT  |                           |              | nuit i                                                                                                                                             |               |
|      |          |         |          |          | m         | edicinal F                | smoky        | ۲F                                                                                                                                                 |               |

# Distillation project: batch distillation

|                  | guaiacol | cresols | syringol | GuR | MGuR | CrR | PhR | SyGB | MSyGB |
|------------------|----------|---------|----------|-----|------|-----|-----|------|-------|
| Wine (2 L)       | 53       | 53      | 10       | 7   | 9    | 8   | 5   | 35   | 3     |
| Low wine (1.5 L) | 93       | 62      | 11       | nd  | nd   | nd  | nd  | nd   | nd    |
| Stillage (0.5 L) | 38       | 10      | 505      | 83  | 110  | 96  | 59  | 194  | 23    |

### Distillation project: batch distillation & addition of carbon

|               | guaiacol | cresols | syringol | GuR | MGuR | CrR | PhR | SyGB | MSyGB |
|---------------|----------|---------|----------|-----|------|-----|-----|------|-------|
| Wine          | 53       | 53      | 10       | 7   | 9    | 8   | 5   | 35   | 3     |
| Low wine      | 93       | 62      | 11       | nd  | nd   | nd  | nd  | nd   | nd    |
| Stillage      | 38       | 10      | 505      | 83  | 110  | 96  | 59  | 194  | 23    |
| Low wine + AC | 2        | nd      | nd       | nd  | nd   | nd  | nd  | nd   | nd    |

# Distillation project: fractional distillation trial

|                       | guaiacol | cresols | syringol |
|-----------------------|----------|---------|----------|
| Wine                  | 53       | 53      | 10       |
| Low wine              | 93       | 62      | 11       |
| Fraction 1 (>93% abv) | 9        | 26      | 26       |
| Fraction 2 (>94% abv) | 16       | 32      | 24       |
| Fraction 3 (>94% abv) | 20       | 29      | 22       |
| Fraction 4 (~10% abv) | 1182     | 218     | 23       |

(with rectification, without vacuum)















#### Sample 7 Base Wine

Sample 8 Hearts Blend

### Acknowledgements

Dr Renata Ristic, Dr Carolyn Puglisi, Dr Colleen Szeto, Dr Richard Muhlack, Assoc. Prof. David Jeffery, Tingting Shi, Yiming Huo, Hugh Holds

Attentis Technologies, Peter Michael Winery, Cassegrain Wines, VAF Memstar, Ligar/amaea, Australian Vintage Limited

Dr Margherita Modesti (Sant'Anna), Dr Mark Krstic, Prof Markus Herderich, Maddy Jiang (AWRI)

Wine Australia

State and Federal Governments

ARC Training Centre for Innovative Wine Production <u>www.arcwinecentre.org.au</u>







Wine Australia

Wine Australia for Australian Wine



Australian Government Australian Research Council

