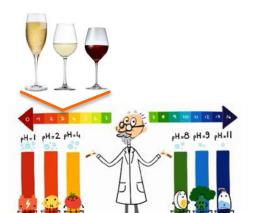
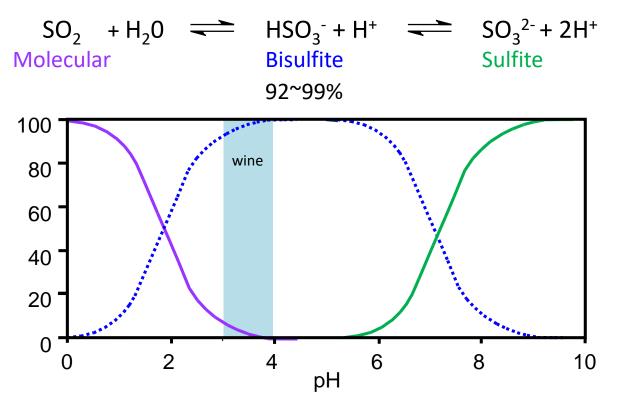
MLF choices in Sparkling wine production


Jason Amos

Sparkling Wine Symposium, William Angliss College, Melbourne 26 June 2018

MLF in sparkling wine

- Style desired
 - Reduce acidity of the base wine
 - Provide microbial stability to the base wine
 - Don't want MLF during 2° fermentation
- Challenges
 - Base wine has high acidity
 - SO2 is more effective at low pH

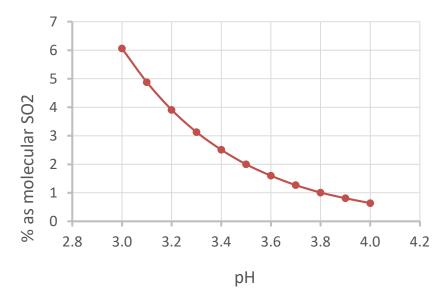


Sulphur dioxide

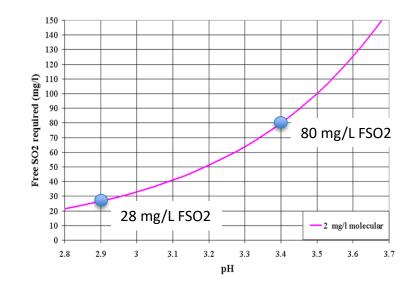
In solution SO₂ exists in 3 main forms in equilibrium

A molecular SO_2 level of 0.4 ppm (equivalent to a free SO2 level of 20 ppm at 3.50 pH) will kill wild yeast without adversely affecting *Saccharomyces*.

Sulphur dioxide


- Antimicrobial & antioxidant
- Binds to carbonyls (particularly acetaldehyde), sugars, colour & phenolics
- In wine we talk about
 - Molecular, Free, Bound & Total SO2

SO2 form	Definition	
Molecular SO ₂	SO ₂	Antimicrobial
Free SO ₂	Mol SO ₂ + bisulfite HSO_3^-	Antioxidant
Bound SO ₂	Includes both strongly & weakly bound forms	Contributes to total SO ₂
Total SO ₂	Free + Bound SO ₂	


Interplay of Free SO2, Molecular SO2 and different pH levels in wine

Percent of the Free SO2 that is present as molecular SO2 at different pH levels in wine.

• More mol SO2 at lower pH

Concentration of Free SO2 required for 2 mg/L mol SO2 at different wine pH.

 Less FSO2 is required for equivalent of 2 mg/L mol SO2 at pH 2.9 than at pH 3.4

> Lower pH = higher mol SO2 = free SO2 is more effective at lower pH

Natural Solutions that add value to the world of winemaking / www.lallemandwine.com

LALLEMAND LALLEMAND OENOLOGY

Challenges for MLF in Sparkling wine

- Base wine has high acidity
- SO2 is more effective at low pH
- Alcohol is not usually a problem

- Malic acid high
 - Lactic acid can be inhibitory to bacteria

MLF options

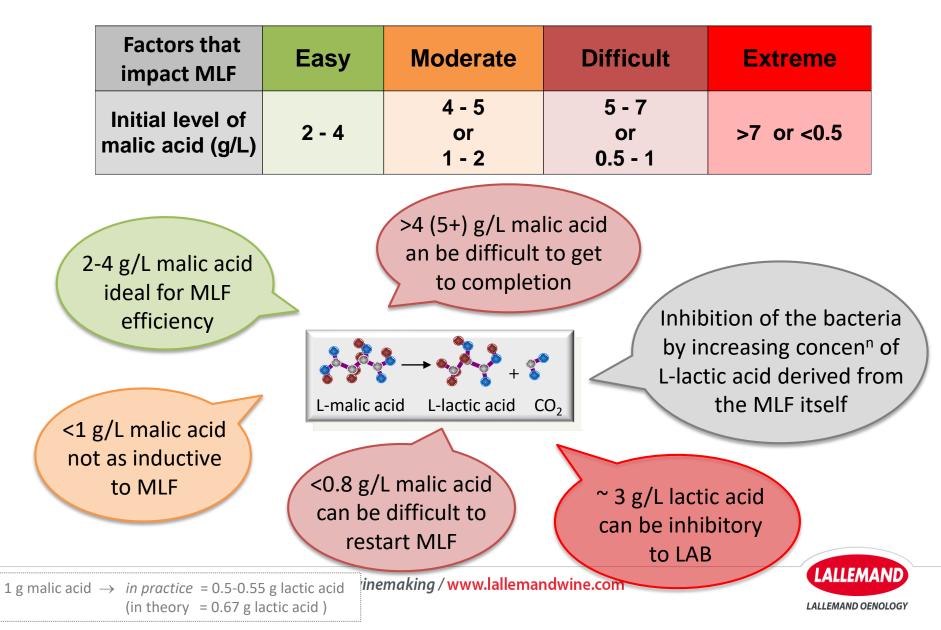
- Timing of inoculation
- Bacteria culture preparation

Timing of inoculation

- Co-inoculation
 - Adaptation to juice/wine
 - Completed sooner

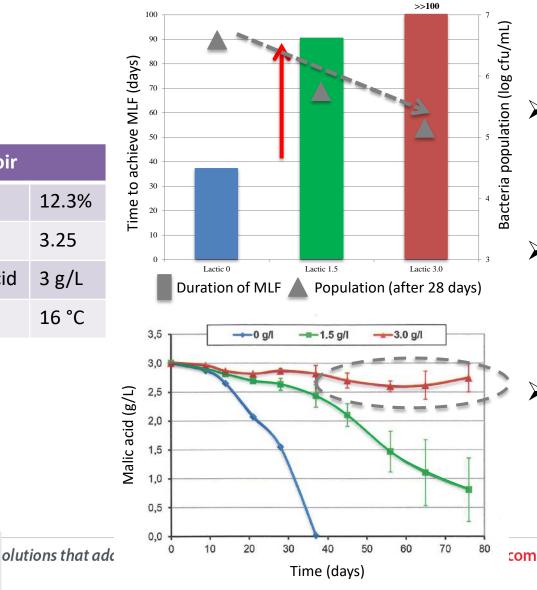
100 100 100 50 0 0 Winemaking

Seq (Post AF)

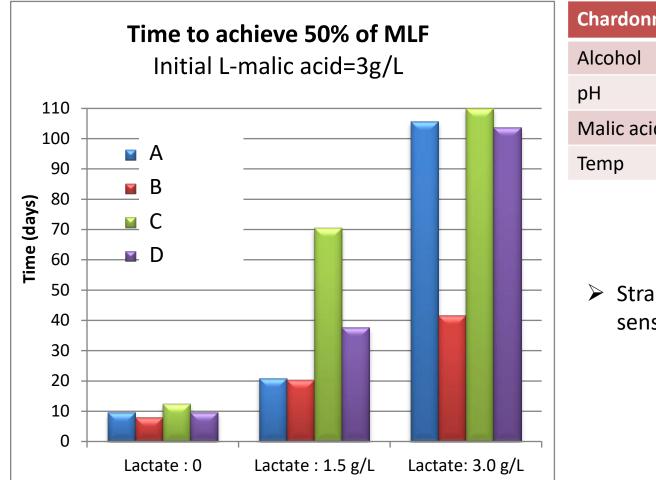

Co-inocⁿ

- Sequential inoculation
 - Managing only MLF (bacteria)
- High malic acid content
 - As MLF progresses, lactic acid produced
 - Lactic acid can be inhibitory to bacteria

0


Malic acid tolerance / Lactic acid sensitivity

Impact of addition of L-lactic acid before MLF


Pinot noir		
Alcohol	12.3%	
рН	3.25	
Malic acid	3 g/L	
Тетр	16 °C	

- Addition of 1.5g/L greatly \succ increases the time to achieve MLF.
- Bacteria viability decreases with higher lactic acid concentrations
- Addition of 3g/L induces a high loss of viability which leads to stuck MLF.

Sensitivity of bacteria strain to L-lactic acid

Chardonna		
Alcohol	12.5%	
рН	3.25	
Malic acid	3 g/L	
Тетр	16 °C	

Strain variation in lactic acid sensitivity/resistance

Malic acid tolerance / Lactic acid sensitivity

Malic acid

- 2 Increasing concentration of malic acid increases the speed of
 - malic acid degradation, but of course also increases the duration of MLF.
 - Some strains more suitable than others for high malic acid content

Lactic acid

- The presence of L-lactic acid in the wine inhibits the implantation and growth of the inoculated wine LAB resulting in an inhibition of MLF.
- An initial content of L-lactic acid in the range of 1.5 g/L strongly slows MLF, but a content of 3.0 g/L fully inhibits MLF.

Problems inducing MLF by inoculation with selected wine bacteria may be encountered in wines with a partial MLF.

LALLEMAND

Bacteria starter culture

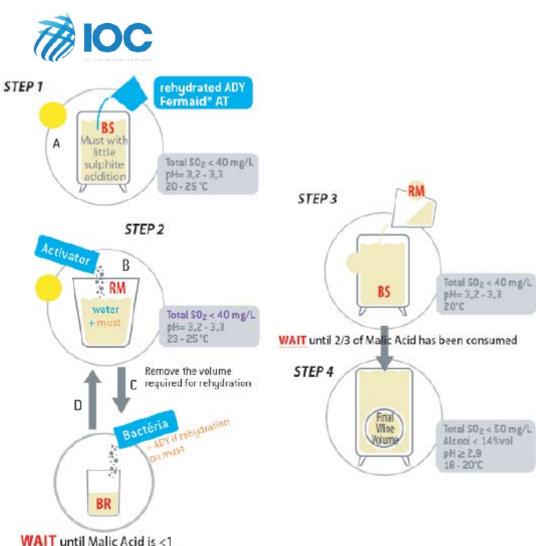
- The real world in relation to Sparkling wine!
 - Starter culture preparation

> Balance between pH (& mol SO2) and starter culture readiness

Bacteria starter culture

- Direct inoculation
 - Not always able to have the 'magic bullet' answer

- Preparation of starter (Standard)
 - Ready bacteria for the juice/wine


IOC Inobacter

- This *Oenococcus oeni* strain has been selected from Champagne by CIVC (International Champagne Committee)
 - Each batch is rigorously controlled by the CIVC
- IOC Inobacter is specific for sparkling wine production
 - pH tolerance >2.9
 - Alcohol tolerance up to 14% v/v
 - SO2 tolerance up to 50 mg/L Total SO2
 - Low production of volatile acidity
 - No production of biogenic amines
 - Excellent tolerance of this strain to extreme wine conditions enables an effective malic acid metabolism
 - Can be used as Co-inoculation with yeast or inoculated after AF as Sequential

IOC Inobacter

- Step-wise build up of the bacterial culture
- Acclimatisation to the wine conditions
- Actively metabolising malic acid
- Bacteria are prepared for the juice /wine

In summary

- Consider SO2 usage with MLF need
- Ideally, direct inoculation
 - Not always possible to have a direct inoculation because of specific challenges with sparkling base wine
 - Low pH & SO2 translate to higher mol SO2
- Select the best bacterial strain for your wine
 - pH tolerance
- High bacteria cell numbers are crucial for implantation & MLF efficiency (>10⁶ cells/mL)
- Even though perhaps not the most desired option, patience with building up the culture is the best way to ensure that the bacteria are ready for your sparkling base wine

