# **AWRI Refrigeration Demand Calculator**



Resources and expertise are readily available to wine producers to manage efficient refrigeration **supply** and plant capacity. However, efficient management of winery refrigeration **demand** and associated heat transfer efficiency has been identified by AWRI collaborators as an area where further understanding is required to achieve reliable efficiency gains.

The AWRI Refrigeration Demand Calculator is a spreadsheet-based tool designed to provide wine producers with enhanced capability for analysis and management of winery refrigeration demand and associated heat transfer efficiency, with simulation capability for different insulation types, tank layout and solar loading.

This project builds on the demonstrated capability of the AWRI in best practice refrigeration operation (as demonstrated with the AWRI publication *Improving Winery Refrigeration Efficiency*) and engineering simulation (as demonstrated by the <u>AWRI Ferment Simulator</u> and bioenergy R&D) with the development of heat and energy balance process models for simulating winery refrigeration demand. These models have been developed with the specific purpose to simulate winery operations and so identify opportunities for producers to reduce energy demand and operating costs.

The Calculator allows producers to enter grape intake and production data to simulate refrigeration demand across the entire annual production cycle. Capability has been included for users to assess the impact of various factors – such as cellar storage and cold stabilisation temperatures, fermentation conditions, climate, brine temperature, tank size and insulation – on refrigeration demand and energy costs. The following documentation details these operating procedures, from entering grape intake data and fermentation conditions to operational parameters such as storage temperatures or the percentage of tanks equipped with insulation. The impact on wine-wine heat exchange for energy recovery during cold stabilisation can also be assessed.

The AWRI Refrigeration Demand Calculator is provided as an unlocked Excel file (compatible with Office 2007 onwards). The source code is also unlocked, allowing wine producers to adapt the simulator functionality to interface directly with LIMS/PLC/SCADA systems for automatic data acquisition if desired.

Please feel free to contact AWRI with any queries, comments, and suggestions regarding the Calculator, or for assistance in use of the package.

#### **Contact Information**

Peter Godden Group Manager – Industry Applications The Australian Wine Research Institute Ph 08 8313 6600 peter.godden@awri.com.au

# **AWRI Refrigeration Demand Calculator**

**Operating Procedure** 

## 1. Enable Macros (if required)

Upon opening the Calculator, please ensure that macros are enabled.

| Home Insert                                                                                                                                 | Page Layout                                                                                             | Formulas                                                                                  | Data                                                                 | Review                                          |   |
|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------|---|
| Cut<br>Copy<br>Paste<br>Clipboard                                                                                                           | Arial •<br>BIZU•<br>Fon                                                                                 | 10 • A<br>• 🖉 • A<br>t                                                                    |                                                                      |                                                 |   |
| Security Warning Macros                                                                                                                     | s have been disab                                                                                       | lld. Optio                                                                                | ons                                                                  |                                                 |   |
| A28 🔫 (                                                                                                                                     | f <sub>x</sub>                                                                                          |                                                                                           |                                                                      |                                                 |   |
|                                                                                                                                             |                                                                                                         | С                                                                                         |                                                                      | D                                               |   |
| Microsoft Office Security Opf                                                                                                               | tions                                                                                                   |                                                                                           |                                                                      | 9                                               | x |
| Macro<br>Macros have been disable<br>Do not enable this conter<br>Warning: It is not pos<br>trustworthy source. Y<br>content provides criti | ed. Macros might c<br>at unless you trust<br>sible to determi<br>You should leave<br>ical functionality | ontain viruses of<br>the source of th<br>ine that this of<br>this content<br>and you trus | r other secu<br>iis file.<br>ontent car<br>disabled u<br>t its sourc | rity hazards.<br>me from a<br>inless the<br>ce. | • |
| File Path:<br>Help protect me fror<br>Enable this content                                                                                   | n unknown conten                                                                                        | t (recommended                                                                            | )                                                                    |                                                 | Ш |
| Links<br>Automatic update of links<br>update of links, your com<br>unless you trust the source<br>File Path:                                | has been disabled<br>puter may no long<br>ce of this file.                                              | l. If you choose<br>er be secure. Do                                                      | to enable a<br>not enable                                            | utomatic<br>this content                        |   |
| Help protect me from                                                                                                                        | m unknown conten                                                                                        | t (recommended                                                                            | )                                                                    |                                                 | - |
| Open the Trust Center                                                                                                                       |                                                                                                         | (                                                                                         | ОК                                                                   | Cance                                           | 1 |

**Click OK** 

#### 2. Worksheets – Overview

( < > > Demand and Usage \_ Demand Chart \_ Red Vintage Planner \_ Cold Soak Red \_ Non Cold Soak Red \_ Red Fermentation Equipment \_ Red Cold Stabilisation \_ Red Fermentation (1) \_ Red Fermentation (2) \_ Red Fermentation (3) \_ []

**Demand and Usage** – this worksheet provides a table of simulated demand and usage in 12 hour increments throughout the entire year. At the bottom of the table the peak demand and total usage are shown, which may then be compared with overall site electricity usage figures. Typically refrigeration would account for 40-70% of total site electricity consumption.

**Demand Chart** The 'Demand Chart' screen gives a graphical representation of the demand in both  $kW_{refrigeration}$  and  $kW_{electrical}$  throughout the entire year. Key features of this graph will typically be demand peaks for white and red production during vintage, as well as required demand for cold stabilisation.

**Red Vintage Planner** – this worksheet tab is where information on daily red grape intake (throughout vintage) is entered, as well as requirements for must chilling and cold soaking. The allocation of fruit to different fermenter and storage tanks is entered here, as well as cold stabilisation requirements.

**Cold Soak Red & Non-Cold Soak Red**– these worksheets are used for internal model calculations relating to cold soaking. No input from the user is required on these worksheets.

**Red Fermentation Equipment** – the Calculator allows the user to specify up to three different red fermenter vessel designs. This worksheet is where fermenter equipment details such as volume and insulation are provided.

**Red Fermentation (1)** – (3) – The Calculator allows the user to specify up to three different fermentation profiles (corresponding to Red Fermenter vessels 1-3). These sheets are used for calculation of refrigeration demand for each ferment profile.

K 🔸 🕨 🗌 White Vintage Planner 🦯 Cold Settle White 🖉 Non Cold Settle White 🖉 White Fermentation Equipment 🧹 White Cold Stabilisation 🗇 White Fermentation (1) 🖉 White Fermentation (2) 🦉 White Fermentation (3) 🔒 🚞 💁 📉 🔛

White Vintage Planner – this worksheet tab is where information on daily white grape intake (throughout vintage) is entered, as well as requirements for must chilling and cold settling. The allocation of fruit to different fermenter and storage tanks is entered here, as well as cold stabilisation requirements.

**Cold Settle White & Non-Cold Settle White** - these worksheets are used for internal model calculations relating to cold settling. No input from the user is required on these worksheets.

**White Fermentation Equipment** – the Calculator allows the user to specify up to three different fermenter vessel designs. This worksheet is where fermenter equipment details such as volume and insulation are provided

**Red Fermentation (1) – (3)** – The Calculator allows the user to specify up to three different white fermentation profiles (corresponding to White Fermenter vessels 1-3). These sheets are used for calculation of refrigeration demand for each ferment profile.

#### Worksheets - Overview (continued)



**Must Chill Cold Settle & Soak** – this worksheet is where information on flowrates and temperatures for must chilling, cold settling and cold soaking are entered.

**Wine Storage** - the Calculator allows the user to specify up to three different storage vessel designs. This worksheet is where equipment details such as volume and insulation are provided.

**Climate and Solar loading** – the Calculator takes ambient temperature max/min data into account when modelling refrigeration demand requirements. This worksheet is where the user would enter information on average monthly max/min temperature data and solar radiation relevant to their geographical location.

**Brine and COP** – this worksheet is where information relating to brine temperatures and brine storage tank volume is entered. If the site employs the use of cold rooms then this information is captured on this worksheet also.

#### **1.** Getting Started- Enter the Vintage Start Date

| В                  | С                 | D                 | E                 |
|--------------------|-------------------|-------------------|-------------------|
|                    |                   |                   |                   |
| Vintage Start Date | 1-Jan-14          |                   |                   |
|                    |                   |                   |                   |
|                    |                   | TOTAL             |                   |
| Date               | kWr refrigeration | kWe refrigeration | Electricity Usage |
| 1/01/2014 9:00     | 84.16             | 39.92             |                   |
| 1/01/2014 21:00    | 10.52             | 4.99              | 59.87             |
| 2/01/2014 9:00     | 91.26             | 43.29             | 519.44            |

1. First, go to the "Demand and Usage" worksheet to enter the vintage Start Date into cell c2 (colour coded grey). This can either be the beginning of the calendar year, or the actual first day of crushing.

#### 2. Using the Red Vintage Planner

| E            | F                             | G         | Н        | I        | J        |
|--------------|-------------------------------|-----------|----------|----------|----------|
|              | Start date                    | 1-Feb-14  |          |          |          |
|              | Start date                    | 1-1 00-14 |          |          |          |
|              |                               |           |          |          |          |
|              |                               | 1-Feb-14  | 2-Feb-14 | 3-Feb-14 | 4-Feb-14 |
|              | Red Intake (tonnes)           | 10        | 15       | 20       | 25       |
|              | Must Chill (%)                | 0%        | 0%       | 0%       | 0%       |
|              | Cold Soak (%)                 | 50%       | 50%      | 50%      | 50%      |
| Soak         | Fermenter Type 1 (%)          | 40%       | 40%      | 40%      | 40%      |
| plo          | Fermenter Type 2 (%)          | 40%       | 40%      | 40%      | 40%      |
|              | Fermenter Type 3 (%)          | 20%       | 20%      | 20%      | 20%      |
|              | Non-Cold Soak                 | 50%       | 50%      | 50%      | 50%      |
| Pe ,         | Fermenter Type 1 (%)          | 40%       | 40%      | 40%      | 40%      |
| on-C<br>Soal | Fermenter Type 2 (%)          | 40%       | 40%      | 40%      | 40%      |
| Ž            | Fermenter Type 3 (%)          | 20%       | 20%      | 20%      | 20%      |
|              | Maturation Storage Type 1 (%) | 50%       | 50%      | 50%      | 50%      |
|              | Maturation Storage Type 2 (%) | 30%       | 30%      | 30%      | 30%      |
|              | Maturation Storage Type 3 (%) | 20%       | 20%      | 20%      | 20%      |
|              | Cold Stabilisation (%)        | 5%        | 5%       | 5%       | 5%       |
|              |                               |           |          |          |          |

- 1. Go to the Red Vintage Planner worksheet.
- 2. For each date of crushing, the corresponding grape intake value (in tonnes) is entered by the user into the yellow cells.
- 3. The percentage of red fruit (on average) which is to be must chilled is specified in the cell G7 (colour coded blue).
- 4. The percentage of red fruit (on average) which is to be cold soaked is specified in cell G8 (colour coded light-green). In the above example, 50% of the red fruit intake is to undergo cold soak. Note that this percentage figure is used to calculate the refrigeration energy required for *maintaining* the cold soak temperature only, and not the additional energy required to initially chill the fruit to the cold soak temperature.
- 5. The Calculator allows the user to specify up to three different red fermenter vessel designs. The percentage of *cold soak* fruit which is to be fermented in vessel 1, 2 or 3 is entered into cells G9-G11 (colour coded dark-green). In the above example, 40% of the cold soak fruit will be fermented in Fermenter Type 1, 40% in Fermenter Type 2 and 20% in Fermenter Type 3.
- The percentage of *Non-cold soak* fruit which is to be fermented in vessel 1, 2 or 3 is entered into cells G9-G11 (colour coded dark green). In the above example, 40% of the cold soak fruit will be fermented in Fermenter Type 1, 40% in Fermenter Type 2 and 20% in Fermenter Type 3.
- 7. The Calculator allows the user to specify up to three different red storage vessel designs. The percentage of red wine production which is to be stored in Maturation Storage Type 1, 2 or 3 is entered into cells G12-G14 (coloured light-purple). In the above example, 50% of red wine production will be matured in Maturation Storage Type 1, 30% of red wine production

will be matured in Maturation Storage Type 2, and 20% of red wine production will be matured in Maturation Storage Type 3.

8. The percentage of red wine production which is to be cold stabilised is entered into cell G15 (coloured coded dark-purple).

#### 3. Specify details for Red Fermentation Equipment

| Red Fermenter Type 1                          |         |            |             |              |
|-----------------------------------------------|---------|------------|-------------|--------------|
| Fermenter Capacity                            | 3.5     | tonnes     |             |              |
| Volume                                        | 4.9     | kL         |             |              |
| Aspect ratio (ie ratio of height to diameter) | 2       |            |             |              |
| Heat transfer area (per tank)                 | 13.41   | m2         |             |              |
| Cooling jacket area                           | 30.00%  | (percentag | e of tank w | /all height) |
| Insulation area                               | 35.00%  | (percentag | e of tank w | all height)  |
| U (jacket region)                             | 0.8     | W/m2/C     |             |              |
| U (rest of tank)                              | 10      | W/m2/C     |             |              |
| Overall U                                     | 0.00678 | kW/m2/C    |             |              |
| Red Fermenter Type 2                          |         |            |             |              |
| Fermenter Capacity                            | 1       | tonnes     |             |              |
| Volume                                        | 1.4     | kL         |             |              |
| Aspect ratio (ie ratio of height to diameter) | 2       |            |             |              |
| Heat transfer area (per tank)                 | 5.82    | m2         |             |              |
| Cooling jacket area                           | 30.00%  | (percentag | e of tank w | /all height) |
| Insulation area                               | 35.00%  | (percentag | e of tank w | /all height) |
| U (jacket region)                             | 0.8     | W/m2/C     |             |              |
| U (rest of tank)                              | 10      | W/m2/C     |             |              |
| Overall U                                     | 0.00678 | kW/m2/C    |             |              |
| Red Fermenter Type 3                          |         |            |             |              |
| Fermenter Capacity                            | 1       | tonnes     |             |              |
| Volume                                        | 1.4     | kL         |             |              |
| Aspect ratio (ie ratio of height to diameter) | 2       |            |             |              |
| Heat transfer area (per tank)                 | 5.82    | m2         |             |              |
| Cooling jacket area                           | 30.00%  | (percentag | e of tank w | /all height) |
| Insulation area                               | 35.00%  | (percentag | e of tank w | all height)  |
| U (jacket region)                             | 0.8     | W/m2/C     |             |              |
| U (rest of tank)                              | 10      | W/m2/C     |             |              |
| Overall U                                     | 0.00678 | kW/m2/C    |             |              |
|                                               |         |            |             |              |

- 1. Go to the Red Fermentation Equipment worksheet.
- 2. For each fermenter type, enter the vessel capacity in tonnes (into the yellow cells)
- 3. Enter the cooling jacket area (as a percentage of the tank wall height) into the green cells. If barrels are to be used in a temperature controlled room (instead of using a stainless or concrete tank for fermentation), then set the 'cooling jacket area' to zero.
  INOTE: if integral applies cells are used in place of a cooling isolate on equivalent (cooling).

[NOTE: if internal cooling coils are used in place of a cooling jacket, an equivalent 'cooling jacket area' can be calculated using the calculation box located on this worksheet. Users type in the coil length and diameter, as well as the tank heat transfer area for the tank in question. The calculation box will then give an 'Equivalent Cooling Jacket Area' value, which should then be entered by the user into the relevant 'Cooling jacket area box (colour coded green). ]

4. Enter the insulation area (as a percentage of the tank wall height) into the blue cells. NOTE: The default calculation assumes a stainless steel tank. If concrete tanks or barrels are

to be used instead, then an insulation value of 0% should be used here. The user should also manually update the 'U (rest of tank) value as per the following:

concrete tank: 5.75 W/m2/C

oak barrel: 7.2 W/m2/C

### 4. Specify Red Fermentation Profiles

| 1                   |               |            |           |               |            |           |          |            |       |         |           |             |             |           |          |           |           |            |  |
|---------------------|---------------|------------|-----------|---------------|------------|-----------|----------|------------|-------|---------|-----------|-------------|-------------|-----------|----------|-----------|-----------|------------|--|
|                     |               |            | - user ad | livetable fie | ы          |           |          |            |       |         |           |             |             |           | 1        |           |           |            |  |
|                     |               |            | - 0301 00 | justable lie  |            |           |          |            |       |         |           |             |             |           |          |           |           |            |  |
|                     |               |            |           |               |            |           |          |            |       |         |           |             | Solve Red   | Ferment   |          |           |           |            |  |
| Volume              |               | 1          | kL        |               |            |           |          |            |       |         |           |             | JOIVE REU   | rennem    |          |           |           |            |  |
| Initial Cell mass   |               |            | o/I       |               |            |           |          |            |       |         |           |             |             |           |          |           |           |            |  |
| Initial N           |               | 0.25       | g/L       |               |            |           |          |            |       |         |           |             |             |           |          |           |           |            |  |
| Desired ferment tim | e             | 8          | days      |               |            |           |          |            |       |         |           | Refrigera   | tion COP    |           | 2.10833  |           |           |            |  |
| Prediction score    |               | 4.706      |           |               |            |           |          |            |       |         |           | Electricity | Cost (\$/kW | e)        | 0.25     |           |           |            |  |
| Refrigeration cost  |               | \$ 11.85   |           |               |            |           |          |            |       |         |           | Overall T   | ank U value | (W/m2/C)  | 6.8      |           |           |            |  |
|                     |               |            |           |               |            |           |          |            |       |         |           |             |             |           |          |           |           |            |  |
|                     | Commerci      | al Ferment |           |               |            |           |          |            |       |         |           |             |             | Simulatio | on model |           |           |            |  |
| Day                 | Baume - actua | Temp C     | DAP addit | i Mixing (0 t | Nutrient A | Pump over | Aeration | Yeast Inno | oc. d | Be/dt   | Baume - N | Required    | Active Cel  | Ethanol   | Nitrogen | Corrected | Low range | High range |  |
| 0                   | 10.3          | 15         |           |               |            |           |          |            |       | 7.19655 | 10.2      | 0.18915     | 0.31997     | 0         | 0.25     | 15        | 10.2      | 10.2       |  |
| 0.5                 | 10.2          | 15         |           |               |            |           |          |            |       | 4.59707 | 10.1      | 0.32924     | 0.76172     | 0.88816   | 0.21947  | 15        | 10.0973   | 10.0973    |  |
| 1                   | 10.1          | 16         |           |               |            |           |          |            |       | 5.8843  | 10.0      | 0.20215     | 1.00662     | 1.50282   | 0.19868  | 15.2      | 10.0262   | 10.0262    |  |
| 1.5                 | 9.8           | 17         |           |               |            |           |          |            |       | 3.79387 | 9.9       | 0.3122      | 1.3995      | 2.54139   | 0.16432  | 16.2      | 9.90607   | 9.90607    |  |
| 2                   | 9.5           | 18         |           |               |            |           |          |            |       | 6.25709 | 9.7       | 0.19556     | 2.11127     | 4.65455   | 0.09893  | 17.2      | 9.66175   | 9.66175    |  |
| 2.5                 | 9.1           | 20         |           |               |            |           |          |            |       | 4.95817 | 9.1       | 0.38256     | 3.1014      | 9.45267   | 0.00752  | 18.4      | 9.10754   | 9.10754    |  |
| 3                   | 8.2           | 20         |           |               |            |           |          |            |       | 6.83319 | 8.1       | 0.31199     | 3.24798     | 18.418    | 0.00052  | 20        | 8.07373   | 8.07373    |  |
| 3.5                 | 7.2           | 20         |           |               |            | 1         |          |            |       | 8.25308 | 6.8       | 0.45337     | 3.27013     | 29.0907   | 0.00101  | 20        | 6.84474   | 6.84474    |  |
| 4                   | 6             | 20         |           |               |            |           |          |            |       | 15.5331 | 5.7       | 0.30966     | 3.29679     | 39.3203   | 0.00224  | 20        | 5.66787   | 5.66787    |  |
| 4.5                 | 4.5           | 20         |           |               |            |           |          |            |       | 23.3564 | 4.6       | 0.41573     | 3.32784     | 48.8679   | 0.00409  | 20        | 4.57062   | 4.57062    |  |
| 5                   | 3.4           | 20         |           |               |            |           |          |            |       | 33.2232 | 3.6       | 0.26716     | 3.35341     | 57.655    | 0.00462  | 20        | 3.56202   | 3.56202    |  |
| 5.5                 | 2.5           | 20         |           |               |            |           |          |            |       | 40.9014 | 2.1       | 0.36742     | 3.35988     | 65.57     | 0.00246  | 20        | 2.65478   | 2.65478    |  |
| 0                   | 1.0           | 20         |           |               |            |           | 1        |            |       | 30.7350 | 1.9       | 0.21306     | 3.3404      | 72.5035   | 0.00046  | 20        | 1.00110   | 1.00110    |  |
| 0.0                 |               | 20         |           |               |            |           |          |            |       | 40.104  | 1.2       | 0.31100     | 3.32972     | 02.2750   | 0.4E.07  | 20        | 1.10430   | 1.10430    |  |
| 7.5                 | 0.5           | 20         |           |               |            |           |          |            |       | 39.4302 | 0.0       | 0.1009/     | 3.30907     | 03.3/30   | 0.1E-07  | 20        | 0.019     | 0.019      |  |
| 1.5                 | 0.2           | 20         |           |               |            |           |          |            |       | 41.1240 | 0.2       | 0.20202     | 3 26470     | 01.4370   | 6.5E 11  | 20        | 0.155564  | 0.13336    |  |
| 85                  | -0.4          | 20         |           |               |            |           |          |            |       | 42.8833 | -0.2      | 0.22580     | 3 24163     | 93.469    | 3.6E-13  | 20        | -0.5318   | -0.5318    |  |
| 9.5                 | -0.0          | 20         |           |               |            |           |          |            |       | 42 7494 | -0.8      | 0.08644     | 3 21801     | 95,632    | 2E-15    | 20        | -0.77828  | -0.77828   |  |
| 9.5                 | -1            | 20         |           |               |            |           |          |            |       | 43 7029 | -1.0      | 0 20189     | 3 19407     | 97 3734   | 1 4E-17  | 20        | -0.97673  | -0.97673   |  |
| 10                  |               |            |           |               |            |           |          |            |       | 47.0905 | -1.1      | 0.06734     | 3,16991     | 98,7795   | 1.2E-19  | 20        | -1.23362  | -1.04045   |  |
| 10.5                |               |            |           |               |            |           |          |            |       | 36.5444 | -1.3      | 0.18679     | 3,14561     | 99.9208   | 1.6E-21  | 20        | -1.36511  | -1.04045   |  |
| 11                  |               |            |           |               |            |           |          |            |       | 31.4419 | -1.4      | 0.05544     | 3.12125     | 100.853   | 2.7E-23  | 20        | -1.47295  | -1.04045   |  |
| 11.5                |               |            |           |               |            |           |          |            |       | 28.8883 | -1.5      | 0.17739     | 3.09687     | 101.622   | 6.3E-25  | 20        | -1.56216  | -1.04045   |  |
| 12                  |               |            |           |               |            |           |          |            |       | 26.8303 | -1.5      | 0.048       | 3.0725      | 102.259   | 2E-26    | 20        | -1.63662  | -1.04045   |  |
| 12.5                |               |            |           |               |            |           |          |            |       | 27.8894 | -1.6      | 0.17147     | 3.04819     | 102.793   | 7.9E-28  | 20        | -1.69934  | -1.04045   |  |
| 13                  |               |            |           |               |            |           |          |            |       | 25.2897 | -1.6      | 0.04325     | 3.02395     | 103.244   | 4E-29    | 20        | -1.75264  | -1.04045   |  |
| 13.5                |               |            |           |               |            |           |          |            |       | 27.815  | -1.7      | 0.16764     | 2.99981     | 103.627   | 2.5E-30  | 20        | -1.79835  | -1.04045   |  |
| 14                  |               |            |           |               |            |           |          |            |       | 29.6405 | -1.7      | 0.04013     | 2.97577     | 103.955   | 1.8E-31  | 20        | -1.83789  | -1.04045   |  |
| 14.5                |               |            |           |               |            |           |          |            |       | 24.4977 | -1.8      | 0.16508     | 2.95186     | 104.239   | 1.6E-32  | 20        | -1.87236  | -1.04045   |  |
| 15                  |               |            |           |               |            |           |          |            |       | 22.7527 | -1.8      | 0.03802     | 2.92807     | 104.485   | 1.7E-33  | 20        | -1.90265  | -1.04045   |  |
| 15.5                |               |            |           |               |            |           |          |            |       | 16 6579 | -1.8      | 0.16333     | 2 90443     | 104 701   | 2F_34    | 20        | -1 92947  | -1 04045   |  |

- The Calculator allows the user to specify up to three different fermentation profiles (corresponding to Red Fermenter vessels 1-3). The worksheets Red Fermentation (1), Red Fermentation (2) and Red Fermentation (3) are used for calculation of refrigeration demand for each ferment profile.
- 2. The ferment trajectory for each ferment profile is entered into the appropriate baume and temperature columns for Ferment Profile 1, 2 and 3. This is exactly the same as the way ferment data is entered into the AWRI Ferment Simulator.
- 3. Once ferment data has been entered into each of the three ferment profiles, click on the 'Solve Red Ferment' button on the Red Fermentation (1) worksheet to calculate the required refrigeration demand for each ferment profile. (Note: This operation requires that the user has enabled Macros in Excel).

### 5. Specify Red Cold Stabilisation Conditions

| Cold Stab Temperature                       | -4         |            |                |               |             |      |  |
|---------------------------------------------|------------|------------|----------------|---------------|-------------|------|--|
| Start date for cold stab                    | 31/05/2014 |            |                |               |             |      |  |
| Total Volume to be cold stabilized          | 4          | kL         |                |               |             |      |  |
| Cold Stab Batch Size                        | 160        | kl         |                |               |             |      |  |
| Aspect ratio (ie ratio of height to diamete | 2          |            |                |               |             |      |  |
| Heat transfer area (per tank)               | 137.04     | m2         |                |               |             |      |  |
| Number of concurrent batches                | 5          |            |                |               |             |      |  |
| Total volume per concurrent batch           | 800        | kL         |                |               |             |      |  |
| Total Heat transfer area                    | 685.20     | m2         |                |               |             |      |  |
| Cooling jacket area                         | 30.00%     | (percentad | e of tank      | wall height)  |             |      |  |
| Insulation area                             | 100.00%    | (percenta) | ,<br>e of tank | wall height)  |             |      |  |
| U (jacket region)                           | 0.8        | W/m2/C     |                | ,             |             |      |  |
| U (rest of tank)                            | 15         | W/m2/C     |                |               |             |      |  |
| Overall U                                   | 0.8        | W/m2/C     |                |               |             |      |  |
|                                             |            |            |                |               |             |      |  |
|                                             |            |            |                |               |             |      |  |
| Energy required to cool to cold stab temp   | 32076000   | kJ         |                |               |             |      |  |
| Efficiency                                  | 90%        |            |                |               |             |      |  |
| Time taken to cool to cold stab temp        | 7          | days       |                |               |             |      |  |
| Power required to cool to cold stab temp    | 58.928571  | kW         |                |               |             |      |  |
| Duration at cold stab tempeerature          | 28         | days       |                |               |             |      |  |
| Total days                                  | 35         |            |                |               |             |      |  |
| Required number of sequential batches       | 0.004375   |            |                |               |             |      |  |
| Wine-Wine heat exchange                     | 0          | <          | Please ty      | /pe 1 for "Ye | s" or 0 foi | "No" |  |
|                                             |            |            |                |               |             |      |  |
| Heat recovery                               | 80%        |            |                |               |             |      |  |
|                                             |            |            |                |               |             |      |  |

- 1. Go to the Red Cold Stabilisation worksheet
- 2. Enter the Cold Stabilisation Temperature
- 3. Enter the Cold Stabilisation Batch Size (in kL)
- 4. Enter the typical number of concurrent cold stabilisation batches
- 5. Enter the typical time taken to cool to the cold stab temperature
- 6. Enter the typical duration at the cold stab temperature
- 7. The Calculator allows the user to simulate the impact of wine-wine heat exchange for refrigeration energy recovery during cold stabilisation. To simulate wine-wine heat exchange, enter a 1 into the blue cell labelled "Wine-Wine heat exchange", otherwise enter a 0.

NOTE: The calculator only models a 12 month production cycle. Users should be aware that due to this limitation, cold stabilisation requirements which extend beyond the 12 month period (e.g. because there is insufficient time to complete sequential batches within the 12 month window) will not be included in the calculations.

#### 6. Using the White Vintage Planner

| E      | F                             | G         | Н         |           | J         |
|--------|-------------------------------|-----------|-----------|-----------|-----------|
|        | Start date                    | 15-Jan-14 |           |           |           |
|        |                               | 15-Jan-14 | 16-Jan-14 | 17-Jan-14 | 18-Jan-14 |
|        | White Intake (tonnes)         | 5         | 10        | 15        | 20        |
|        | Must Chill (%)                | 50%       | 50%       | 50%       | 50%       |
| ۵      | Cold Settle (%)               | 50%       | 50%       | 50%       | 50%       |
| ett    | Fermenter Type 1 (%)          | 40%       | 40%       | 40%       | 40%       |
| olds   | Fermenter Type 2 (%)          | 40%       | 40%       | 40%       | 40%       |
| 0      | Fermenter Type 3 (%)          | 20%       | 20%       | 20%       | 20%       |
|        | Non-Cold Settle               | 50%       | 50%       | 50%       | 50%       |
| P a    | Fermenter Type 1 (%)          | 40%       | 40%       | 40%       | 40%       |
| Settle | Fermenter Type 2 (%)          | 40%       | 40%       | 40%       | 40%       |
| ž      | Fermenter Type 3 (%)          | 20%       | 20%       | 20%       | 20%       |
|        | Maturation Storage Type 1 (%) | 50%       | 50%       | 50%       | 50%       |
|        | Maturation Storage Type 2 (%) | 30%       | 30%       | 30%       | 30%       |
|        | Maturation Storage Type 3 (%) | 20%       | 20%       | 20%       | 20%       |
|        | Cold Stabilisation (%)        | 95%       | 95%       | 95%       | 95%       |
|        |                               |           |           |           |           |

- 1. For each date of crushing, the corresponding grape intake value (in tonnes) is entered by the user into the yellow cells.
- The percentage of white fruit (on average) which is to be must chilled is specified in the cell G7 (colour coded blue).
- 3. The percentage of white fruit (on average) which is to be cold settled is specified in cell G8 (colour coded light-green). In the above example, 50% of the red fruit intake is to be cold settled.
- 4. The Calculator allows the user to specify up to three different white fermenter vessel designs. The percentage of *cold settled* fruit which is to be fermented in vessel 1, 2 or 3 is entered into cells G9-G11 (colour coded dark-green). In the above example, 40% of the cold settled fruit will be fermented in Fermenter Type 1, 40% in Fermenter Type 2 and 20% in Fermenter Type 3.
- 5. The percentage of *Non-cold settled* fruit which is to be fermented in vessel 1, 2 or 3 is entered into cells G9-G11 (colour coded dark-green). In the above example, 40% of the cold settled fruit will be fermented in Fermenter Type 1, 40% in Fermenter Type 2 and 20% in Fermenter Type 3.
- 6. The Calculator allows the user to specify up to three different white storage vessel designs. The percentage of white wine production which is to be stored in Maturation Storage Type 1, 2 or 3 is entered into cells G12-G14 (coloured light-purple). In the above example, 50% of white wine production will be matured in Maturation Storage Type 1, 30% of white wine production will be matured in Maturation Storage Type 2, and 20% of white wine production will be matured in Maturation Storage Type 3.

7. The percentage of white wine production which is to be cold stabilised is entered into cell G15 (coloured coded dark-purple).

#### 7. Specify details for White Fermentation Equipment

|    | A                                             | В           | С          | D            | E           |
|----|-----------------------------------------------|-------------|------------|--------------|-------------|
| 1  |                                               |             |            |              |             |
| 2  | White Fermenter Type 1                        |             |            |              |             |
| 3  | Fermenter Capacity                            | 14.28571429 | tonnes     |              |             |
| 4  | Volume                                        | 10          | kL         |              |             |
| 5  | Aspect ratio (ie ratio of height to diameter) | 2           |            |              |             |
| 6  | Heat transfer area (per tank)                 | 21.58       | m2         |              |             |
| 7  | Cooling jacket area                           | 30.00%      | (percentag | e of tank wa | all height) |
| 8  | Insulation area                               | 100.00%     | (percentag | e of tank wa | all height) |
| 9  | U (jacket region)                             | 0.8         | W/m2/C     |              |             |
| 10 | U (rest of tank)                              | 10          | W/m2/C     |              |             |
| 11 | Overall U                                     | 0.0008      | kW/m2/C    |              |             |
| 12 |                                               |             |            |              |             |
| 13 | White Fermenter Type 2                        |             |            |              |             |
| 14 | Fermenter Capacity                            | 1.428571429 | tonnes     |              |             |
| 15 | Volume                                        | 1           | kL         |              |             |
| 16 | Aspect ratio (ie ratio of height to diameter) | 2           |            |              |             |
| 17 | Heat transfer area (per tank)                 | 4.65        | m2         |              |             |
| 18 | Cooling jacket area                           | 30.00%      | (percentag | e of tank wa | all height) |
| 19 | Insulation area                               | 100.00%     | (percentag | e of tank wa | all height) |
| 20 | U (jacket region)                             | 0.8         | W/m2/C     |              |             |
| 21 | U (rest of tank)                              | 10          | W/m2/C     |              |             |
| 22 | Overall U                                     | 0.0008      | kW/m2/C    |              |             |
| 23 |                                               |             |            |              |             |
| 24 | White Fermenter Type 3                        |             |            |              |             |
| 25 | Fermenter Capacity                            | 1.428571429 | tonnes     |              |             |
| 26 | Volume                                        | 1           | kL         |              |             |
| 27 | Aspect ratio (ie ratio of height to diameter) | 2           |            |              |             |
| 28 | Heat transfer area (per tank)                 | 4.65        | m2         |              |             |
| 29 | Cooling jacket area                           | 30.00%      | (percentag | e of tank wa | all height) |
| 30 | Insulation area                               | 100.00%     | (percentag | e of tank wa | all height) |
| 31 | U (jacket region)                             | 0.8         | W/m2/C     |              |             |
| 32 | U (rest of tank)                              | 10          | W/m2/C     |              |             |
| 33 | Overall U                                     | 0.0008      | kW/m2/C    |              |             |
| 34 |                                               |             |            |              |             |
| 35 |                                               |             |            |              |             |

- 1. Go to the White Fermentation Equipment worksheet.
- 2. For each fermenter type, enter the vessel volume in kL (into the yellow cells)
- 3. Enter the cooling jacket area (as a percentage of the tank wall height) into the green cells. . If barrels are to be used in a temperature controlled room (instead of using a stainless or concrete tank for fermentation), then set the 'cooling jacket area' to zero.

[NOTE: if internal cooling coils are used in place of a cooling jacket, an equivalent 'cooling jacket area' can be calculated using the calculation box located on this worksheet. Users type in the coil length and diameter, as well as the tank heat transfer area for the tank in question. The calculation box will then give an 'Equivalent Cooling Jacket Area' value, which should then be entered by the user into the relevant 'Cooling jacket area' box (colour coded green). ]

4. Enter the insulation area (as a percentage of the tank wall height) into the blue cells. NOTE: The default calculation assumes a stainless steel tank. If concrete tanks or barrels are to be used instead, then an insulation value of 0% should be used here. The user should also manual update the "U (rest of tank)" value as per the following: concrete tank: 5.75 W/m2/C oak barrel: 7.2 W/m2/C

### 8. Specify White Fermentation Profiles

|                    |               | I           | = user ad | djustable fie | eld          |          |          |           |     |         |           |             |             |           |          |           |           |            |
|--------------------|---------------|-------------|-----------|---------------|--------------|----------|----------|-----------|-----|---------|-----------|-------------|-------------|-----------|----------|-----------|-----------|------------|
|                    |               |             |           |               |              |          |          |           |     |         |           |             |             |           |          |           |           |            |
|                    |               |             |           |               |              |          |          |           |     |         |           | S           | olve White  | e Ferment | t        |           |           |            |
| Volume             |               | 1           | kL        |               |              |          |          |           |     |         |           |             |             |           |          |           |           |            |
| Initial Cell mass  |               |             | g/L       |               |              |          |          |           |     |         |           |             |             |           |          |           |           |            |
| Initial N          |               | 0.25        | g/L       |               |              |          |          |           |     |         |           |             |             |           |          |           |           |            |
| Desired ferment ti | me            | 14          | days      |               |              |          |          |           |     |         |           | Refrigera   | tion COP    |           | 2.10833  |           |           |            |
| Prediction score   |               | 3.178       |           |               |              |          |          |           |     |         |           | Electricity | Cost (\$/kW | e)        | 0.25     |           |           |            |
| Refrigeration cost |               | \$ 5.69     |           |               |              |          |          |           |     |         |           | Overall Ta  | ank U value | (W/m2/C)  | 0.8      |           |           |            |
|                    |               |             |           |               |              |          |          |           |     |         |           |             |             |           |          |           |           |            |
|                    | Commerc       | ial Ferment |           |               |              |          |          |           |     |         |           |             |             | Simulatio | on model |           |           |            |
| Day                | Baume – actua | Temp C      | DAP addit | ti Mixing (O  | t Nutrient A | Pump ove | Aeration | Yeast Inn | oc. | dBe/dt  | Baume - N | Required    | Active Cel  | Ethanol   | Nitrogen | Corrected | Low range | High range |
|                    | 0 10.3        | 15          |           |               |              |          |          |           |     | 7.19655 | 10.2      | 0.02232     | 0.32802     | 0         | 0.25     | 15        | 10.2      | 10.2       |
| 0.                 | 5 10.2        | 15          |           |               |              |          |          |           |     | 4.59707 | 10.1      | 0.05192     | 0.78894     | 0.90492   | 0.21808  | 15        | 10.0953   | 10.0953    |
|                    | 1 10.1        | 16          |           |               |              |          |          |           |     | 5.8843  | 10.0      | 0.04245     | 1.05773     | 1.56279   | 0.19527  | 15.2      | 10.0193   | 10.0193    |
| 1.                 | 5 9.8         | 17          |           |               |              |          |          |           |     | 3.79387 | 9.9       | 0.07144     | 1.49774     | 2.70359   | 0.15673  | 16.2      | 9.88732   | 9.88732    |
|                    | 2 9.7         | 15          |           |               |              |          |          |           |     | 6.25709 | 9.6       | 0.10536     | 2.30117     | 5.09766   | 0.08257  | 16.6      | 9.61057   | 9.61057    |
| 2.                 | 5 9.4         | 15          |           |               |              |          |          |           |     | 4.95817 | 9.1       | 0.18534     | 3.1348      | 9.64442   | 0.00501  | 15        | 9.08538   | 9.08538    |
|                    | 3 8.5         | 15          |           |               |              |          |          |           |     | 6.83319 | 8.4       | 0.17946     | 3.20019     | 15.2034   | 3E-05    | 15        | 8.44361   | 8.44361    |
| 3.                 | 5 8           | 15          |           |               |              | 1        |          |           |     | 8.25308 | 7.8       | 0.19002     | 3.19812     | 20.7359   | 1.7E-07  | 15        | 7.80501   | 7.80501    |
|                    | 4 7.2         | 15          |           |               |              |          |          |           |     | 15.5331 | 7.2       | 0.16968     | 3.19496     | 26.0819   | 9.6E-10  | 15        | 7.18807   | 7.18807    |
| 4.                 | 5 6.6         | 15          |           |               |              |          |          |           |     | 23.3564 | 6.6       | 0.17888     | 3.19107     | 31.2282   | 5.7E-12  | 15        | 6.59427   | 6.59427    |
|                    | 5 6           | 15          |           |               |              |          |          |           |     | 33.2232 | 6.0       | 0.15814     | 3.18648     | 36.1682   | 3.5E-14  | 15        | 6.02439   | 6.02439    |
| 5.                 | 5 5.5         | 15          |           |               |              |          |          |           |     | 40.9014 | 5.5       | 0.16702     | 3.18122     | 40.8963   | 2.2E-16  | 15        | 5.47906   | 5.47906    |
|                    | 6 5           | 15          |           |               |              |          | 1        |           |     | 38.7358 | 5.0       | 0.14602     | 3.17533     | 45.4077   | 1.5E-18  | 15        | 4.95884   | 4.95884    |
| 6.                 | 5 4.5         | 15          |           |               |              |          |          |           |     | 43.154  | 4.5       | 0.15468     | 3.16884     | 49.6987   | 1.1E-20  | 15        | 4.46415   | 4.46415    |
|                    | 7 4.1         | 15          |           |               |              |          |          |           |     | 39.4582 | 4.0       | 0.13354     | 3.16179     | 53.7668   | 8.6E-23  | 15        | 3.99526   | 3.99526    |
| 7.                 | 5 3.7         | 15          |           |               |              |          |          |           |     | 41.1248 | 3.6       | 0.14213     | 3.1542      | 57.6108   | 7.3E-25  | 15        | 3.55231   | 3.55231    |
|                    | 8 3.3         | 15          |           |               |              |          |          |           |     | 42.9535 | 3.1       | 0.12099     | 3.14612     | 61.2308   | 6.8E-27  | 15        | 3.13526   | 3.13526    |
| 8.                 | 5 2.9         | 15          |           |               |              |          |          |           |     | 42.8827 | 2.7       | 0.12966     | 3.13757     | 64.6284   | 6.9E-29  | 15        | 2.74394   | 2.74394    |
|                    | 9 2.5         | 15          |           |               |              |          |          |           |     | 42.7494 | 2.4       | 0.10868     | 3.1286      | 67.8065   | 7.9E-31  | 15        | 2.37797   | 2.37797    |
| 9.                 | 5 2           | 15          |           |               |              |          |          |           |     | 43.7029 | 2.0       | 0.1176      | 3.11924     | 70.7697   | 1E-32    | 15        | 2.03684   | 2.03684    |
| 1                  | 0 1.8         | 15          |           |               |              |          |          |           |     | 47.0905 | 1.7       | 0.09694     | 3.10951     | 73.5236   | 1.5E-34  | 15        | 1.71987   | 1.71987    |
| 10.                | 5 1.5         | 15          |           |               |              |          |          |           |     | 36.5444 | 1.4       | 0.10625     | 3.09945     | 76.0752   | 2.4E-36  | 15        | 1.42624   | 1.42624    |
| 1                  | 1 1.1         | 15          |           |               |              |          |          |           |     | 31.4419 | 1.2       | 0.08604     | 3.08909     | 78.4328   | 4.4E-38  | 15        | 1.155     | 1.155      |
| 11.                | 5 1           | 15          |           |               |              |          |          |           |     | 28.8883 | 0.9       | 0.09585     | 3.07846     | 80.6053   | 9.2E-40  | 15        | 0.90509   | 0.90509    |
| 1                  | 2 0.8         | 15          |           |               |              |          |          |           |     | 26.8303 | 0.7       | 0.07618     | 3.06758     | 82.6024   | 2.2E-41  | 15        | 0.67539   | 0.67539    |
| 12                 | 5 0.5         | 15          |           |               |              |          |          |           |     | 27.8894 | 0.5       | 0.08657     | 3.05649     | 84.4347   | 6.1E-43  | 15        | 0.46469   | 0.46469    |
| 1                  | 3 0.2         | 15          |           |               |              |          |          |           |     | 25.2897 | 0.3       | 0.0675      | 3.0452      | 86.1125   | 1.9E-44  | 15        | 0.27176   | 0.27176    |
| 13.                | 5 0.1         | 15          |           |               |              |          |          |           |     | 27.815  | 0.1       | 0.07849     | 3.03374     | 87.6468   | 6.7E-46  | 15        | 0.09536   | 0.09536    |
| 1                  | 4 0           | 15          |           |               |              |          |          |           |     | 29.6405 | -0.1      | 0.06002     | 3.02212     | 89.0481   | 2.7E-47  | 15        | -0.06574  | -0.06574   |
| 14.                | 5 -0.2        | 15          |           |               |              |          |          |           |     | 24.4977 | -0.2      | 0.07159     | 3.01038     | 90.3269   | 1.2E-48  | 15        | -0.21276  | -0.21276   |
| 1                  | 5 -0.4        | 15          |           |               |              |          |          |           |     | 22.7527 | -0.3      | 0.05368     | 2.99852     | 91.4932   | 6.4E-50  | 15        | -0.34684  | -0.34684   |
| 15.                | 5             |             |           |               |              |          |          |           |     | 16.6579 | -0.5      | 0.06579     | 2.98655     | 92.5567   | 3.7E-51  | 15        | -0.53423  | -0.40397   |
| 1                  | 6             |             |           |               |              |          |          |           |     | 15.3669 | -0.6      | 0.0484      | 2.9/451     | 93.5265   | 2.4E-52  | 15        | -0.64613  | -0.40397   |
| 16.                | 5             |             |           |               |              |          |          |           |     | 10.1224 | -0.7      | 0.06099     | 2.96239     | 94.411    | 1.6E-53  | 15        | -0.74826  | -0.40397   |
| 1                  | 5             |             |           |               |              |          |          |           |     | 10.4102 | -0.8      | 0.04403     | 2.95021     | 95.2162   | 1.4E-54  | 15        | -0.84151  | -0.40397   |
| 17.                | 3             |             |           |               |              |          |          |           |     | 0.33003 | -0.9      | 0.05703     | 2.33/30     | 30.8002   | 1.3E-33  | 15        | -0.52074  | -0.40397   |

- The Calculator allows the user to specify up to three different fermentation profiles (corresponding to White Fermenter vessels 1-3). The worksheets White Fermentation (1), White Fermentation (2) and White Fermentation (3) are used for calculation of refrigeration demand for each ferment profile.
- 2. The ferment trajectory for each ferment profile is entered into the appropriate baume and temperature columns for Ferment Profile 1, 2 and 3. This is exactly the same as the way ferment data is entered into the AWRI Ferment Simulator.
- 3. Once ferment data has been entered into each of the three ferment profiles, click on the 'Solve White Ferment' button on the White Fermentation (1) worksheet to calculate the required refrigeration demand for each ferment profile. (Note: This operation requires that the user has enabled Macros in Excel).

#### 9. Specify White Cold Stabilisation Conditions

| Cold Stab Temperature                       | -4         |            |            |               |            |        |  |
|---------------------------------------------|------------|------------|------------|---------------|------------|--------|--|
| Start date for cold stab                    | 31/05/2014 |            |            |               |            |        |  |
| Tatal Values to be cald stabilized          |            | LI.        |            |               |            |        |  |
| Total volume to be cold stabilized          | 4          | KL         |            |               |            |        |  |
| Cold Stab Batch Size                        | 160        | kL         |            |               |            |        |  |
| Aspect ratio (ie ratio of height to diamete | 2          |            |            |               |            |        |  |
| Heat transfer area (per tank)               | 137.04     | m2         |            |               |            |        |  |
| Number of concurrent batches                | 5          |            |            |               |            |        |  |
| Total volume per concurrent batch           | 800        | kL         |            |               |            |        |  |
| Total Heat transfer area                    | 685.20     | m2         |            |               |            |        |  |
| Cooling jacket area                         | 30.00%     | (percentag | ge of tank | wall height)  |            |        |  |
| Insulation area                             | 100.00%    | (percentag | je of tank | wall height)  |            |        |  |
| U (jacket region)                           | 0.8        | W/m2/C     |            |               |            |        |  |
| U (rest of tank)                            | 15         | W/m2/C     |            |               |            |        |  |
| Overall U                                   | 0.8        | W/m2/C     |            |               |            |        |  |
|                                             |            |            |            |               |            |        |  |
|                                             | 00070000   |            |            |               |            |        |  |
| Energy required to cool to cold stab temp   | 32076000   | kJ         |            |               |            |        |  |
| Efficiency                                  | 90%        |            |            |               |            |        |  |
| lime taken to cool to cold stab temp        | /          | days       |            |               |            |        |  |
| Power required to cool to cold stab temp    | 58.928571  | kVV        |            |               |            |        |  |
| Duration at cold stab tempeerature          | 28         | days       |            |               |            |        |  |
| lotal days                                  | 35         |            |            |               |            |        |  |
| Required number of sequential batches       | 0.004375   |            |            |               |            |        |  |
| Wine-Wine heat exchange                     | 0          | <          | Please ty  | ype 1 for "Ye | s" or 0 fo | r "No" |  |
|                                             |            |            |            |               |            |        |  |
| Heat recovery                               | 80%        |            |            |               |            |        |  |
| Desidual action of the cold state           | E0 000E74  | LAAT       |            |               |            |        |  |

- 1. Go to the White Cold Stabilisation worksheet
- 2. Enter the Cold Stabilisation Temperature
- 3. Enter the Cold Stabilisation Batch Size (in kL)
- 4. Enter the typical number of concurrent cold stabilisation batches
- 5. Enter the typical time taken to cool to the cold stab temperature
- 6. Enter the typical duration at the cold stab temperature
- The Calculator allows the user to simulate the impact of wine-wine heat exchange for refrigeration energy recovery during cold stabilisation. To simulate wine-wine heat exchange, enter a 1 into the blue cell labelled Wine-Wine heat exchange, otherwise enter a 0.

NOTE: The calculator only models a 12 month production cycle. Users should be aware that due to this limitation, cold stabilisation requirements which extend beyond the 12 month period (e.g. because there is insufficient time to complete sequential batches within the 12 month window) will not be included in the calculations.

#### 10. Specify conditions for must chilling, cold settling and cold soaking

| RED                    |          |         | WHITE                  |          |         |
|------------------------|----------|---------|------------------------|----------|---------|
| Must Chilling          |          |         | Must Chilling          |          |         |
| Must Chill Flowrate    | 6        | kL/hr   | Must Chill Flowrate    | 6        | kL/hr   |
|                        |          |         |                        |          |         |
|                        | 0.001667 | kL/s    |                        | 0.001667 | kL/s    |
| Inlet Juice Temp       | 25       | C       | Inlet Juice Temp       | 25       | С       |
| Outlet Juice Temp      | 20       | C       | Outlet Juice Temp      | 15       | С       |
| ср                     | 3.8      | kJ/kg/C | ср                     | 3.8      | kJ/kg/C |
| losses                 | 15%      |         | losses                 | 15%      |         |
| Q                      | 39.69417 | kW      | Q                      | 79.38833 | kW      |
|                        |          |         |                        |          |         |
| Cold Soak              |          |         | Cold Settling          |          |         |
| Cold Settling Duration | 72       | hours   | Cold Settling Duration | 1        | hours   |
| Cold Settling Duration | 4        | C       | Cold Settling Duration | 15       | С       |

Go to the Must Chill Cold Settle & Soak worksheet

Go to the Basic Ferment Entry worksheet

- 1. Enter the must chill flow rates for both red and white production
- 2. Enter the typical inlet and outlet juice temperatures for red and white must chilling
- 3. For red production, enter the typical cold soak duration (in hours) and temperature.
- 4. For white production, enter the typical cold settling duration and temperature.

#### **11. Specify Storage Conditions**

| Tank - Type 1                 |                         |                  | White Wine          |    |       |
|-------------------------------|-------------------------|------------------|---------------------|----|-------|
|                               |                         |                  | Storage Temperature | 5  | С     |
| Volume                        | 15 kL                   |                  | Storage duration    | 34 | weeks |
| Aspect ratio                  | 2                       |                  |                     |    |       |
| Heat transfer area (per tank) | 28.28 m2                |                  |                     |    |       |
| Insulation area               | 35% (percentage of ta   | ank wall height) | Red Wine            |    |       |
| U (jacket region)             | 0.8 W/m2/C              |                  | Storage Temperature | 10 | С     |
| U (rest of tank)              | 10 W/m2/C               |                  | Storage duration    | 40 | weeks |
| Overall U                     | 6.78 W/m2/C             |                  |                     |    |       |
|                               |                         |                  |                     |    |       |
|                               |                         |                  |                     |    |       |
|                               |                         |                  |                     |    |       |
| Tank - Type 2                 |                         |                  |                     |    |       |
|                               |                         |                  |                     |    |       |
| Volume                        | 1 kL                    |                  |                     |    |       |
| Aspect ratio                  | 2                       |                  |                     |    |       |
| Heat transfer area (per tank) | 4.65 m2                 |                  |                     |    |       |
| Insulation area               | 35% (percentage of ta   | ank wall height) |                     |    |       |
| U (jacket region)             | 0.8 W/m2/C              |                  |                     |    |       |
| U (rest of tank)              | 10 W/m2/C               |                  |                     |    |       |
| Overall U                     | 6.78 W/m2/C             |                  |                     |    |       |
|                               |                         |                  |                     |    |       |
|                               |                         |                  |                     |    |       |
|                               |                         |                  |                     |    |       |
|                               |                         |                  |                     |    |       |
|                               |                         |                  |                     |    |       |
| Tank - Type 3                 |                         |                  |                     |    |       |
|                               |                         |                  |                     |    |       |
| Volume                        | 1 kL                    |                  |                     |    |       |
| Aspect ratio                  | 2                       |                  |                     |    |       |
| Heat transfer area (per tank) | 4.65 m2                 |                  |                     |    |       |
| Insulation area               | 35% (percentage of tage | ank wall height) |                     |    |       |
| U (jacket region)             | 0.8 W/m2/C              |                  |                     |    |       |
| U (rest of tank)              | 10 W/m2/C               |                  |                     |    |       |
| Overall U                     | 6.78 W/m2/C             |                  |                     |    |       |
|                               |                         |                  |                     |    |       |

- 1. Additional fields are also provided for users to enter comments, or additional analysis results conducted during fermentation, as well as text fields for yeast and wine type, variety and product description. This information also is optional as it is not used by the simulator for calculating the prediction.
- 2. Go to the Wine storage worksheet
- 3. The Calculator allows the user to specify up to three different storage vessel designs. This worksheet is where equipment details such as volume and insulation are provided.
- 4. For each of the three tank types (Tank Type 1, Tank Type 2 and Tank Type 3) enter:
  - a. Volume in kL
  - b. Insulation area (as a percentage of the tank wall height)
- 5. Enter the maturation storage temperature and duration for both white and red wine production into the highlighted fields as shown.

## 12. Specify Storage Conditions

| В                                               | С          | D         | E        | F        | G        | Н        | I        | J        | K        | L        | M        | N         | 0     |
|-------------------------------------------------|------------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|-------|
| Climate Data - sourced from www.bom.gov.au      |            |           |          |          |          |          |          |          |          |          |          |           |       |
|                                                 |            |           |          |          |          |          |          |          |          |          |          |           |       |
|                                                 |            |           |          |          |          |          |          |          |          |          |          |           |       |
|                                                 |            |           |          |          |          |          |          |          | -        |          |          | _         |       |
|                                                 | Jan        | ⊢eb       | Mar      | Apr      | Мау      | Jun      | Jul      | Aug      | Sep      | Oct      | Nov      | Dec       |       |
| Mean Max (°C)                                   | 33.1       | 32.2      | 28.9     | 23.9     | 19.3     | 15.4     | 14.4     | 16.6     | 19.9     | 23.8     | 28.1     | 30.7      |       |
| Mean Min (°C)                                   | 17.3       | 17.2      | 14.3     | 10       | 7.2      | 4.5      | 3.4      | 3.8      | 0        | 9        | 12.8     | 15.1      |       |
| Average Ambient                                 | 25.2       | 24.7      | 21.6     | 17.0     | 13.3     | 10.0     | 8.9      | 10.2     | 13.0     | 16.4     | 20.5     | 22.9      |       |
| Average Daily Solar Radiation (MJ/m2)           | 30         | 24        | 21       | 18       | 15       | 12       | 12       | 15       | 24       | 30       | 30       | 33        |       |
| , , , , , , , , , , , , , , , , , , ,           | 27         | 21        | 18       | 15       | 12       | 9        | 9        | 12       | 21       | 27       | 27       | 30        |       |
| Average Daily Solar Ratiation - Average (MJ/m2) | 28.5       | 22.5      | 19.5     | 16.5     | 13.5     | 10.5     | 10.5     | 13.5     | 22.5     | 28.5     | 28.5     | 31.5      |       |
| Sunrise (15th)                                  | 6:19:00    | 6:50:00   | 7:15:00  | 6:39:00  | 7:02:00  | 7:20:00  | 7:19:00  | 6:54:00  | 6:14:00  | 6:33:00  | 6:02:00  | 5:58:00   |       |
| Sunset (15th)                                   | 20:30:00   | 20:08:00  | 19:34:00 | 17:52:00 | 17:22:00 | 17:12:00 | 17:24:00 | 17:45:00 | 18:07:00 | 19:29:00 | 19:58:00 | 20:24:00  |       |
| daylight hours                                  | 14.2       | 13.3      | 12.3     | 11.2     | 10.3     | 9.9      | 10.1     | 10.9     | 11.9     | 12.9     | 13.9     | 14.4      |       |
| Flux average (daylight hours)                   | 558.166863 | 469.9248  | 439.7835 | 408.6181 | 362.9032 | 295.6081 | 289.2562 | 345.6221 | 525.9467 | 612.1134 | 568.1818 | 606.23557 | kW/m2 |
| Solar Loading                                   |            |           |          |          |          |          |          |          |          |          |          |           |       |
| average insulation                              | 67.50%     |           |          |          |          |          |          |          |          |          |          |           |       |
|                                                 | alpha sun  | alpha amb | pient    |          |          |          |          |          |          |          |          |           |       |
| white                                           | 0.12       | 0.9       |          |          |          |          |          |          |          |          |          |           |       |
| stainless steel                                 | 0.37       | 0.6       |          |          |          |          |          |          |          |          |          |           |       |
| average                                         | 0.20125    | 0.8025    |          |          |          |          |          |          |          |          |          |           |       |
| # of tanks North-South                          | 20         |           |          |          |          |          |          |          |          |          |          |           |       |
| # of tanks East-West                            | 10         |           |          |          |          |          |          |          |          |          |          |           |       |
| % area                                          | 7.3%       |           |          |          |          |          |          |          |          |          |          |           |       |
|                                                 | Jan        | Feb       | Mar      | Apr      | May      | Jun      | Jul      | Aug      | Sep      | Oct      | Nov      | Dec       |       |
| Tsurface                                        | 46.1631207 | 42.69867  | 39.0162  | 33.93655 | 29.01099 | 23.39281 | 22.20749 | 25.70763 | 35.11419 | 41.00876 | 42.66409 | 45.94369  |       |
| Weighted ambient                                | 26.7198262 | 26.0049   | 22.86267 | 18.18152 | 14.39267 | 10.9246  | 9.864793 | 11.3243  | 14.5569  | 18.18414 | 22.06052 | 24.570668 |       |

- 1. Go to the Climate & Solar Loading worksheet.
- 2. The Calculator takes ambient temperature max/min data into account when modelling refrigeration demand requirements. This worksheet is where the user would enter information on average monthly max/min temperature data and solar radiation relevant to their geographical location. If the winery is located inside a building, then the monthly max/min temperature values relevant to that building should be used instead of the outside ambient temperatures.
- 3. Average max and min temperature data and solar flus for the user's location is entered into the highlighted fields as shown (This information can be accessed from <a href="http://www.bom.gov.au">www.bom.gov.au</a> however the default values shown in the calculator should be appropriate for most users.)
- Solar radiation of the tank farm is accounted for by entering the number of tanks in the North-South and East-West directions.
   NOTE: if tanks are located inside or under cover, then solar loading should not be applied to the calculations. In this case, the number of tanks North-South and East-West should each

the calculations. In this case, the number of tanks North-South and East-West should each be set to zero. This will in effect turn off the solar loading component of the calculations.

#### **13. Specify Refrigeration Plant Conditions**

|    | A                                               | В        | С      | D |
|----|-------------------------------------------------|----------|--------|---|
| 1  |                                                 |          |        |   |
| 2  | Brine tank                                      |          |        |   |
| 3  | Brine Tank volume                               | 20       | kL     |   |
| 4  | Aspect Ratio                                    | 2        |        |   |
| 5  | diameter                                        | 2.335089 | m      |   |
| 6  | height                                          | 4.670177 | m      |   |
| 7  | Area                                            | 34.25994 | m2     |   |
| 8  | # of brine tanks                                | 1        |        |   |
| 9  | Total Area                                      | 34.25994 | m2     |   |
| 10 |                                                 |          |        |   |
| 11 | Temperature Maintenance of Brine Tank           |          |        |   |
| 12 | Brine Temp                                      | -7       |        |   |
| 13 | U                                               | 0.8      | W/m2/C |   |
| 14 | Tank Surface Area                               | 34.25994 | m2     |   |
| 15 |                                                 |          |        |   |
| 16 |                                                 |          |        |   |
| 17 | Refrigeration Specs                             |          |        |   |
| 18 | Temp                                            | COP      |        |   |
| 19 | -8                                              | 2.05     | 2.05   |   |
| 20 | 4                                               | 2.75     | 2.75   |   |
| 21 |                                                 |          |        |   |
| 22 | slope                                           | 0.058333 |        |   |
| 23 | Intercept                                       | 2.516667 |        |   |
| 24 |                                                 |          |        |   |
| 25 | Refrigeration COP                               | 2.1      |        |   |
| 26 | Average Electricity Cost (usage + network/dist) | 0.25     | \$/kWh |   |

- 1. Go to the Brine and COP worksheet.
- 2. This worksheet is where information relating to brine temperatures and brine storage tank volume is entered. If the site employs the use of cold rooms then this information is captured on this worksheet also.
- 3. Enter the brine tank volume (in kL) and brine temperature set point into the yellow cells as shown.

| 3 | Heat loss from brine lines   |         | 1         | 2           | 3           | 4        | 5         | 6        | 7         | 8        | 9        | 10       | 11          | 12         |  |
|---|------------------------------|---------|-----------|-------------|-------------|----------|-----------|----------|-----------|----------|----------|----------|-------------|------------|--|
| 3 |                              |         | Jan       | Feb         | Mar         | Apr      | May       | Jun      | Jul       | Aug      | Sep      | Oct      | Nov         | Dec        |  |
| ) | Average ambient Temp         | С       | 26.719826 | 26.00490385 | 22.86267465 | 18.18152 | 14.392672 | 10.9246  | 9.8647929 | 11.3243  | 14.5569  | 18.18414 | 22.06052158 | 24.5706675 |  |
| 1 | Brine Temp                   |         | -7        | -7          | -7          | -7       | -7        | -7       | -7        | -7       | -7       | -7       | -7          | -7         |  |
| 2 | U                            | W/m2/C  | 3.00      | 3.00        | 3.00        | 3.00     | 3.00      | 3.00     | 3.00      | 3.00     | 3.00     | 3.00     | 3.00        | 3.00       |  |
| 3 | Total length of brine lines  | m       | 200       | 200.00      | 200.00      | 200.00   | 200.00    | 200.00   | 200.00    | 200.00   | 200.00   | 200.00   | 200.00      | 200.00     |  |
| 1 | Diameter of brine lines      | m       | 0.075     | 0.075       | 0.075       | 0.075    | 0.075     | 0.075    | 0.075     | 0.075    | 0.075    | 0.075    | 0.075       | 0.075      |  |
| 5 | Heat transfer area (total)   | m2      | 47.12     | 47.12       | 47.12       | 47.12    | 47.12     | 47.12    | 47.12     | 47.12    | 47.12    | 47.12    | 47.12       | 47.12      |  |
| 5 | Q                            | kWr     | 4.7670281 | 4.665958356 | 4.221736169 | 3.559954 | 3.0243177 | 2.534031 | 2.3842039 | 2.590537 | 3.047535 | 3.560323 | 4.108334449 | 4.46319797 |  |
| 7 |                              |         |           |             |             |          |           |          |           |          |          |          |             |            |  |
| 3 | Heat loss from cool building |         | 1         | 2           | 3           | 4        | 5         | 6        | 7         | 8        | 9        | 10       | 11          | 12         |  |
| ) |                              |         | Jan       | Feb         | Mar         | Apr      | May       | Jun      | Jul       | Aug      | Sep      | Oct      | Nov         | Dec        |  |
| ) | Average ambient Temp         | С       | 26.719826 | 26.00490385 | 22.86267465 | 18.18152 | 14.392672 | 10.9246  | 9.8647929 | 11.3243  | 14.5569  | 18.18414 | 22.06052158 | 24.5706675 |  |
| 1 | Room Temp                    |         | 17        | 17          | 17          | 17       | 15        | 8        | 8         | 8        | 8        | 8        | 17          | 17         |  |
| 2 | L                            | m       | 0         | 0.00        | 0.00        | 0.00     | 0.00      | 0.00     | 0.00      | 0.00     | 0.00     | 0.00     | 0.00        | 0.00       |  |
| 3 | W                            | m       | 0         | 0.00        | 0.00        | 0.00     | 0.00      | 0.00     | 0.00      | 0.00     | 0.00     | 0.00     | 0.00        | 0.00       |  |
| ļ | H                            | m       | 0         | 0.00        | 0.00        | 0.00     | 0.00      | 0.00     | 0.00      | 0.00     | 0.00     | 0.00     | 0.00        | 0.00       |  |
| 5 | Volume                       | m3      | 0         | 0.00        | 0.00        | 0.00     | 0.00      | 0.00     | 0.00      | 0.00     | 0.00     | 0.00     | 0.00        | 0.00       |  |
| 5 | U (insulated)                | W/m2/C  | 1.00      | 1.00        | 1.00        | 1.00     | 1.00      | 1.00     | 1.00      | 1.00     | 1.00     | 1.00     | 1.00        | 1.00       |  |
| 7 | U (uninsulated)              | W/m2/C  | 12.00     | 12.00       | 12.00       | 12.00    | 12.00     | 12.00    | 12.00     | 12.00    | 12.00    | 12.00    | 12.00       | 12.00      |  |
| 3 | % insulated                  | %       | 80%       | 0.80        | 0.80        | 0.80     | 0.80      | 0.80     | 0.80      | 0.80     | 0.80     | 0.80     | 0.80        | 0.80       |  |
| 9 | Overall U                    | W/m2/C  | 3.20      | 3.20        | 3.20        | 3.20     | 3.20      | 3.20     | 3.20      | 3.20     | 3.20     | 3.20     | 3.20        | 3.20       |  |
| ) | Air density                  | kg/m3   | 1.2041    | 1.20        | 1.20        | 1.20     | 1.20      | 1.20     | 1.20      | 1.20     | 1.20     | 1.20     | 1.20        | 1.20       |  |
| 1 | Air change per day           |         | 3         | 3.000       | 3.000       | 3.000    | 3.000     | 3.000    | 3.000     | 3.000    | 3.000    | 3.000    | 3.000       | 3.000      |  |
| 2 | Mass of air changed per day  | kg      | 0         | 0.000       | 0.000       | 0.000    | 0.000     | 0.000    | 0.000     | 0.000    | 0.000    | 0.000    | 0.000       | 0.000      |  |
| 3 | Specific Heat of Air         | kJ/kg/C | 1.012     | 1.012       | 1.012       | 1.012    | 1.012     | 1.012    | 1.012     | 1.012    | 1.012    | 1.012    | 1.012       | 1.012      |  |
| 1 |                              |         |           |             |             |          |           |          |           |          |          |          |             |            |  |
| 5 | Heat transfer area (total)   | m2      |           | -           |             |          | -         | -        | -         | -        |          | -        |             | -          |  |
| 5 | Q                            | kWr     | 0         | 0           | 0           | 0        | 0         | 0        | 0         | 0        | 0        | 0        | 0           | 0          |  |
| ſ |                              |         |           |             |             |          |           |          |           |          |          |          |             |            |  |
| - |                              |         |           |             |             |          |           |          |           |          |          |          |             |            |  |

- 4. Heat losses from brine lines are also calculated. The total length of brine lines, as well as the brine line diameter (in m) should be entered into the yellow fields as shown.
- 5. The insulation U value for the brine lines should also be entered as follows:
  - a. Completely insulated brine lines: 0.5 W/m2/C
  - b. Partial insulation or old/deteriorating/minimal insulation: 3.0 W/m2/C
  - c. PVC pipes: 5.0 W/m2/C
  - d. Uninsulated steel: 10 W/m2/C
- 6. If the site uses a cold room then the losses from this can also be calculated on this worksheet. The room temperature set point and dimensions should be entered into the yellow fields as shown.



- 1. Go to the Demand Chart worksheet.
- This screen gives a graphical representation of the demand in both kW<sub>refrigeration</sub> and kW<sub>electrical</sub> throughout the entire year. Key features of this graph will typically be demand peaks for white and red production during vintage, as well as required demand for cold stabilisation.
- 3. Note the increasing steps in demand in the second half of the year. This is associated with cold stabilisation across that period, with increasing month-on-month demand due to the increase in ambient temperatures over that period.
- 4. Go to the Demand and Usage worksheet.
- 5. Maximum demand and total usage values are given at the bottom of the worksheet as shown on the following page.

|     | Α | В                   | С           | D        | E        | F   |
|-----|---|---------------------|-------------|----------|----------|-----|
| 707 |   | 18/12/2013 21:00    | 276.0347002 | 127.4006 | 1528.808 |     |
| 708 |   | 19/12/2013 9:00     | 276.0347002 | 127.4006 | 1528.808 |     |
| 709 |   | 19/12/2013 21:00    | 276.0347002 | 127.4006 | 1528.808 |     |
| 710 |   | 20/12/2013 9:00     | 276.0347002 | 127.4006 | 1528.808 |     |
| 711 |   | 20/12/2013 21:00    | 276.0347002 | 127.4006 | 1528.808 |     |
| 712 |   | 21/12/2013 9:00     | 276.0347002 | 127.4006 | 1528.808 |     |
| 713 |   | 21/12/2013 21:00    | 276.0347002 | 127.4006 | 1528.808 |     |
| 714 |   | 22/12/2013 9:00     | 276.0347002 | 127.4006 | 1528.808 |     |
| 715 |   | 22/12/2013 21:00    | 276.0347002 | 127.4006 | 1528.808 |     |
| 716 |   | 23/12/2013 9:00     | 278.410493  | 128.4972 | 1541.966 |     |
| 717 |   | 23/12/2013 21:00    | 278.410493  | 128.4972 | 1541.966 |     |
| 718 |   | 24/12/2013 9:00     | 278.410493  | 128.4972 | 1541.966 |     |
| 719 |   | 24/12/2013 21:00    | 278.410493  | 128.4972 | 1541.966 |     |
| 720 |   | 25/12/2013 9:00     | 278.410493  | 128.4972 | 1541.966 |     |
| 721 |   | 25/12/2013 21:00    | 278.410493  | 128.4972 | 1541.966 |     |
| 722 |   | 26/12/2013 9:00     | 278.410493  | 128.4972 | 1541.966 |     |
| 723 |   | 26/12/2013 21:00    | 278.410493  | 128.4972 | 1541.966 |     |
| 724 |   | 27/12/2013 9:00     | 278.410493  | 128.4972 | 1541.966 |     |
| 725 |   | 27/12/2013 21:00    | 278.410493  | 128.4972 | 1541.966 |     |
| 726 |   | 28/12/2013 9:00     | 278.410493  | 128.4972 | 1541.966 |     |
| 727 |   | 28/12/2013 21:00    | 278.410493  | 128.4972 | 1541.966 |     |
| 728 |   | 29/12/2013 9:00     | 278.410493  | 128.4972 | 1541.966 |     |
| 729 |   | 29/12/2013 21:00    | 278.410493  | 128.4972 | 1541.966 |     |
| 730 |   | 30/12/2013 9:00     | 276.0347002 | 127.4006 | 1528.808 |     |
| 731 |   | 30/12/2013 21:00    | 276.0347002 | 127.4006 | 1528.808 |     |
| 732 |   | 31/12/2013 9:00     | 276.0347002 | 127.4006 | 1528.808 |     |
| 733 |   | 31/12/2013 21:00    | 276.0347002 | 127.4006 | 1528.808 |     |
| 734 |   |                     |             |          |          |     |
| 735 |   | Total Usage (Refrig | eration)    |          | 419639.9 | kWh |
| 736 |   | Max Demand          | 1108.738002 | 511.7252 |          | kW  |
| 737 |   |                     |             |          |          |     |
| 738 |   | Site Total          |             |          | 969356.4 | kWh |
| 739 |   |                     |             |          |          |     |
| 740 |   | Refrigeration %     |             |          | 43.3%    |     |
| 741 |   |                     |             |          |          |     |
| 742 |   |                     |             |          |          |     |

- 6. Enter the site annual total electricity consumption in the yellow field as shown.
- 7. The Calculator will then display the refrigeration energy use as a percentage of total site electricity use. This value would typically range from 40-60%, depending on the proportion of insulated tanks and whether the site total includes energy use for wine packaging equipment, offices etc.
- 8. Now that production information has been entered into the Calculator, the user can adjust different parameters to evaluate their impact on refrigeration costs for their winery: eg brine temperature, insulation coverage, tank size, wine-wine heat exchange, cold stab conditions etc

#### **15.** Improvement Opportunities – an example

As an example of how this tool can be used to identify improvement opportunities, compare figures A and B below for a hypothetical large winery.



Figure A – Refrigeration demand without tank insulation



Figure B – Refrigeration demand (in the same winery) with tank insulation

Of particular note is that the refrigeration demand for cold stabilisation (in the second half of the year) is significantly higher when insulated tanks are not used. In this hypothetical case study, this

winery would see a reduction in refrigeration electricity consumption of 83%, representing a saving of approximately \$1 million using typical industrial electricity cost metrics.