

Uncertainty of measurement for Trace analysis

Analysis uncertainties are ordered by method number.

Generic definitions

Limit of quantification (LoQ): the lowest level at which a result can be confidently cited in matrix. A result of '< LoQ' indicates that the sample has no detectable residue of the analyte at a concentration equal to or greater than the LoQ for the method.

Limit of detection (LoD): the lowest value that can be positively identified as present by the instrumentation. A result of '< LoD' indicates that the sample has no detectable residue of the analyte at a concentration equal to or greater than the LoD for the method.

Uncertainty of Measurement (UoM): the uncertainty in the reported result.

Notes:

1. In some instances, levels between the LoD and the LoQ are reported as 'trace' to indicate that the compound has been positively identified but the quantitation cannot be confidently cited.

LM33/GM119- Determination of agrochemical residues in fruits and vegetables by LC/MS/MS.

Grapes

All compounds have a LoQ of 0.01 mg/L except Emamectin (0.005 mg/L), Indoxacarb (0.02 mg/L), Azinphos methyl, Fenitrothion, Fludioxonil, Iprodione, Parathion methyl, Procymidone, Triadimenol, Fenvalerate, Methamidiphos, THPI (0.05 mg/L) and Captan (0.1 mg/L). Residues above the LoQ are reported to the nearest 0.01 mg/L.

The following compounds have a UoM of ± 0.01 mg/kg at levels at or below 0.05 mg/kg. UoM of ± 0.02 mg/kg from 0.05 – 0.2 mg/kg and $\pm 10\%$ at levels greater than 0.2 mg/kg:

Ametoctradin	Fenarimol	Oxadixyl
Atrazine	Fenhexamid	Parathion-methyl
Azinphos methyl	Fenitrothion	Penconazole
Azoxystrobin	Fenthion	Procymidone
Benalaxyl	Fenvalerate	Propiconazole
Boscalid	Flusilazole	Proquinazid
Buprofezin	Hexaconazole	Pyrimethanil

Authorisor: Quality Manager

Version: 1.3 Current

Date last modified: 14/12/2016

Doc ID: 28838

Carbaryl Indoxacarb Quinoxyfen

Carbendazim Iprodione Simazine

Chlorantraniliprole Malathion Spinetoram

Chlorpyrifos-methyl Mandipropamid Spinosad

Clothianidin Metalaxyl Spiroxamine

Cyflufenamid Methamidiphos Tebuconazole

Diazinon Methidathion Tetraconazole

Dimethoate Methiocarb Tebufenozide

Dimethomorph Methomyl THPI

Emamectin Methoxyfenozide Triadimefon

Etoxazole Metrafenone Triadimenol

Fenamiphos Myclobutanil Trifloxystrobin

The following compounds will have a UoM of ± 0.02 mg/kg at levels at or below 0.05 mg/kg. UoM of ± 0.03 mg/kg from 0.05 – 0.2 mg/kg and $\pm 15\%$ at levels greater than 0.2 mg/kg:

Chlorpyrifos Fludioxonil

Cyprodinil Pyraclostrobin

Ethion Quinoxyfen

Captan has a UoM of ± 0.04 mg/kg at levels at or below 0.2 mg/kg and $\pm 20\%$ at levels greater than 0.1 mg/kg:

Note: THPI (tetrahydrophthalamide) is a breakdown metabolite of Captan but is currently not part of any residue definition or regulatory guideline for any export market. Results are provided for informative purposes only.

Marc, pomace and fruit and vegetables

All compounds have a LoQ of 0.05 mg/L except Captan, Fludioxonil, fenvalerate and THPI (0.1 mg/L). Residues above the LoQ are reported to the nearest 0.01 mg/L.

The following compounds have a UoM of ± 0.01 mg/kg at levels at or below 0.05 mg/kg. UoM of ± 0.02 mg/kg from 0.05 – 0.2 mg/kg and $\pm 10\%$ at levels greater than 0.2 mg/kg:

Ametoctradin Fenarimol Oxadixyl

Authorisor: Quality Manager

Version: 1.3 Current

Doc ID: 28838

Atrazine Fenhexamid Parathion-methyl

Azinphos methyl Fenitrothion Penconazole

Azoxystrobin Fenthion Procymidone

Benalaxyl Fenvalerate Propiconazole

Boscalid Flusilazole Proquinazid

Buprofezin Hexaconazole Pyrimethanil

Carbaryl Indoxacarb Quinoxyfen

Carbendazim Iprodione Simazine

Chlorantraniliprole Malathion Spinetoram

Chlorpyrifos-methyl Mandipropamid Spinosad

Clothianidin Metalaxyl Spiroxamine

Cyflufenamid Methamidiphos Tebuconazole

Diazinon Methidathion Tetraconazole

Dimethoate Methiocarb Tebufenozide

Dimethomorph Methomyl THPI

Emamectin Methoxyfenozide Triadimefon

Etoxazole Metrafenone Triadimenol

Fenamiphos Myclobutanil Trifloxystrobin

The following compounds will have a UoM of ± 0.02 mg/kg at levels at or below 0.05 mg/kg. UoM of ± 0.03 mg/kg from 0.05 – 0.2 mg/kg and $\pm 15\%$ at levels greater than 0.2 mg/kg:

Chlorpyrifos Fludioxonil

Cyprodinil Pyraclostrobin

Ethion Quinoxyfen

Captan has a UoM of ± 0.04 mg/kg at levels at or below 0.2 mg/kg and $\pm 20\%$ at levels greater than 0.1 mg/kg:

Note: THPI (tetrahydrophthalamide) is a breakdown metabolite of Captan but is currently not part of any residue definition or regulatory guideline for any export market. Results are provided for informative purposes only.

Authorisor: Quality Manager

Version: 1.3 Current

LM34/GM121-Determination of agrochemical residues in wine, juice and liquid samples by LC/MS/MS.

All compounds have a LoQ of 0.01 mg/L except Captan, Fludioxonil (0.02 mg/L) and THPI (0.2 mg/L). Residues above the LoQ are reported to the nearest 0.01 mg/L.

The following compounds have an UoM of ± 0.01 mg/L at levels at or below 0.05 mg/L. UoM of ± 0.02 mg/L from 0.05 - 0.2 mg/L and 10% at levels greater than 0.2 mg/L.

Atrazine	Etoxazole	Oxadixyl
Azinphos methyl	Fenarimol	Penconazole
Azoxystrobin	Fenhexamid	Procymidone
Benalaxyl	Fenitrothion	Propiconazole
Boscalid	Fenthion	Proquinazid
Buprofezin	Flusilazole	Quinoxyfen
Carbaryl	Hexaconazole	Simazine
Carbendazim	Iprodione	Spiroxamine
Chlorantraniliprole	Malathion	Tebuconazole
Chlorpyrifos-methyl	Mandipropamid	Tetraconazole
Clothianidin	Metalaxyl	Tebufenozide
Cyflufenamid	Methamidiphos	THPI
Cyprodinil	Methidathion	Triadimefon
Diazinon	Methoxyfenozide	Triadimenol
Dimethoate	Metrafenone	Trifloxystrobin
Dimethomorph	Myclobutanil	

The following compounds will have a UoM of ± 0.02 mg/kg at levels at or below 0.05 mg/kg. UoM of ± 0.03 mg/kg from 0.05 – 0.2 mg/kg and $\pm 15\%$ at levels greater than 0.2 mg/kg:

Chlorpyrifos Parathion methyl

Ethion Prothiofos

Fludioxonil Pyraclostrobin

Authorisor: Quality Manager

Version: 1.3 Current

Date last modified: 14/12/2016

Indoxacarb Pyrimethanil

Captan has a UoM of ±0.04 mg/kg at levels at or below 0.2 mg/kg and ± 20% at levels greater than 0.1 mg/kg:

Note: THPI (tetrahydrophthalamide) is a breakdown metabolite of captan but is currently not part of any residue definition or regulatory guideline for any export market. Results are provided for informative purposes only.

GM46- Oak flavour analysis in wines and wood products

<u>Wine</u>

Compound	LoQ (μg/L)	UoM (<10 μg/L) (± μg/L)	UoM (±)
guaiacol	1	1	10%
4-methylguaiacol	1	1	10%
cis-oak lactone	10		10%
trans-oak lactone	10		10%
eugenol	10		10%
vanillin	10		15%
4-ethylphenol	10		10%
4-ethylguaiacol	10		10%
furfural	10		10%
5-methylfurfural	10		10%
Iso-eugenol	10		10%
5-hydroxy-methylfurfural	1000		10%
Syringaldehyde	500		10%
Coniferaldehyde	500		10%
Sinapaldehyde	500		10%

Wood products

The following limits have been adopted based on a 10 g/L extraction in a model wine simulant.

Compound	LoQ	UoM
	(μg/g)	(±µg/g)
guaiacol	0.1	10%
4-methylguaiacol	0.1	10%
cis-oak lactone	1	10%
trans-oak lactone	1	10%
eugenol	1	10%
vanillin	1	10%
4-ethylphenol	1	10%
4-ethylguaiacol	1	10%
furfural	1	10%
5-methylfurfural	1	10%

Authorisor: Quality Manager

Version: 1.3 Current

Date last modified: 14/12/2016

GM63- Determination of Ochratoxin A in wine by HPLC-FLD

The result is expressed as Ochratoxin A (μ g/L for wine).

Compound	LoQ (μg/L)	UoM
		(±µg/L)
Ochratoxin A	0.03	0.01

Levels above the reporting limit 0.03 μ g/L are reported to the nearest 0.01 μ g/L.

GM89- Chloroanisoles in wine and cork by SPME

Wine

Compound	LoD (ng/L)	LoQ (ng/L)	UoM (±) (<10 ng/L)	UoM (±) (>10 ng/L)
2,6-DCA	10	15	5	20%
2,4-DCA	10	15	5	20%
2,4,6-TCA	1	2	1	10%
2,3,4,6-TeCA	1	2	2	20%
2,4,6-TBA	1	2	1	10%
PCA	1	2	2	20%

Oak wood

Compound	LoD (ng/L)*	LoQ (ng/L)*	UoM (±) (<10 ng/L)*	UoM (±) (>10 ng/L)*
2,6-DCA	5	7	2	20%
2,4-DCA	5	7	2	20%
2,4,6-TCA	1	2	1	10%
2,3,4,6-TeCA	1	2	2	20%
2,4,6-TBA	1	2	1	10%
PCA	1	2	2	20%

^{*}For cork and oak samples this figure relates to the model wine extract generated from the sample. Oak samples are extracted at approx. 20 g/L in model wine and corks are extracted whole in 100 mL of model wine.

Cork

Compound	LoD (ng/cork)*	LoQ (ng/cork)*	UoM (±) (<1 ng/cork)*	UoM (±) (>10 ng/cork)*
2,6-DCA	0.5	0.7	0.2	20%
2,4-DCA	0.5	0.7	0.2	20%
2,4,6-TCA	0.1	0.2	0.1	10%
2,3,4,6-TeCA	0.1	0.2	0.2	20%
2,4,6-TBA	0.1	0.2	0.1	10%
PCA	0.1	0.2	0.2	20%

Authorisor: Quality Manager

Version: 1.3 Current

Date last modified: 14/12/2016

Doc ID: 28838

Corks are extracted whole in 100 mL of model wine and the extract analysed as per wine.

GM90- Determination of ethyl carbamate and potential ethyl carbamate in wine

Results are reported in µg/L to the nearest unit.

Compound	LoQ (µg/L)	UoM (<30 μg/L)	UoM
		(±µg/L)	(±)
ethyl carbamate	8	3	10%

GM91- 4EP and 4EG in wine and oak by SPME

Compound	LoQ (μg/L)	UoM (< 100 μg/L) (±μg/L)	UoM (> 100 μg/L) (±)
4-ethylphenol	10	10	10%
4-ethylguaiacol	10	10	10%

GM93- Determination of Resveratrol and Piceid in wines and juice

Levels above the LoQ (0.4 mg/L) are reported to the nearest 0.1 mg/L. Between levels of 0.4 mg/L and 2.0 mg/L UoM is \pm 0.4 mg/L, for levels above 2.0 mg/L the UoM is \pm 20%.

GM95- Determination of a group of methoxypyrazines in wine, juice and grapes.

Compound	LoQ (ng/L)	UoM(<20 ng/L) (±ng/L)	UoM (>20 ng/L) (±)
IPMP	5	4	20%
SBMP	5	4	20%
IBMP	5	4	20%

Levels above the quantitation limit 5 ng/L are reported to the nearest 1 ng/L.

GM97- Determination of 2,4-D in leaves, grapes and wine

The result is expressed as total 2,4-D in mg/L for wine and is a sum of the free acid and esters, expressed as the free acid.

Residues above 0.01 mg/L are reported to the nearest 0.01 mg/L. A result of '< 0.01' indicates that the sample has no detectable residue of 2,4-D at a concentration equal to or greater than the limit of quantitation for the method.

Compound	LoQ (mg/L or mg/kg)	UoM <0.1 (±mg/L or mg/kg)	UoM >0.1 (±mg/L or mg/kg)
2,4-D	0.01	0.01	10%

Authorisor: Quality Manager

Version: 1.3 Current

MCPA	0.01	0.01	10%

GM102 - Determination of a group of halogenated phenols in wine

Compound	LoD (ng/L)	LoQ (ng/L)	UoM (<100 ng/L) (±ng/L)	UoM (>100 ng/L) (±)
2-chlorophenol	10	20	10	20%
2-bromophenol	10	20	10	20%
6-chloro-o-cresol	0.5	2	10	20%
2,4-dichlorophenol	10	20	10	20%
2,6-dichlorophenol	10	20	10	20%
3 & 4-bromophenol	10	20	10	20%
2,4-dibromophenol	10	20	10	20%
2,6-dibromophenol	10	20	10	20%

Note for Tartaric acid samples: Tartaric acids were added at to pH adjusted juice at approximately 10 g/L prior to fermentation. The resulting wine was then analysed as per GM102 and results expressed in ng/L.

GM118- Determination of natamycin in wine

The result is expressed in $\mu g/L$ of natamycin.

Compound	LoQ (µg/L)	UoM (<20 μg/L) (±μg/L)	UoM (>20 μg/L) (±)
Natamycin	5	5	20%

Residues above 5 μ g/L are reported to the nearest μ g/L

GM122- Determination of smoke related compounds in wine, juice and grapes

Wine and juice

Compound	LoQ (μg/L)	UoM (<10 μg/L) (±μg/L)	UoM (>10 μg/L) (±)
guaiacol	1	1	10%
4-methylguaiacol	1	1	10%
o-cresol	1	1	10%
p-cresol	1	1	10%
m-cresol	1	1	10%
syringol	1	1	10%
methyl syringol	1	1	10%

Grapes and leaves

Compound	LoQ (μg/kg)	UoM (<10 μg/kg) (±μg/kg)	UoM (>10 μg/kg) (±μg/kg)
Guaiacol	1	1	10%
4-methylguaiacol	1	1	10%
o-cresol	1	1	10%
p-cresol	1	1	10%

Authorisor: Quality Manager

Version: 1.3 Current

Date last modified: 14/12/2016

m-cresol	1	1	10%
Syringol	2	1	10%
Methyl Syringol	2	1	10%

GM123- Determination of low molecular weight sulphur compounds in wine

Results above the limit of quantitation are reported to the nearest $\mu g/L$ for all analytes.

Compound	LoQ	UoM (<50 μg/L)	UoM (>50 μg/L)
	(μg/L)	(±μg/L)	(±)
Hydrogen sulphide (H ₂ S)	0.5	5	10%
Methanethiol (methyl mercaptan)	1	5	10%
Ethanethiol (ethyl mercaptan)	1	5	10%
Dimethylsulfide (DMS)	2	5	10%
Carbon disulfide (CS ₂)	0.5	5	10%
Diethylsulfide	0.5	5	10%
Methylthioacetate	5	5	10%
Dimethyldisulfide (DMDS)	0.5	5	10%
Ethylthioacetate	5	5	10%
Diethyldisulfide	0.5	5	10%

A result of '< LoQ' indicates the compound has not been determined at a level at or above the nominated LoQ above

GM125-Determination of indole in wine and juice

Compound	LoQ (μg/L)	UoM (±)
Indole	5	10%

The result is expressed in μ g/L of indole.

Residues above 5 μ g/L are reported to the nearest μ g/L.

GM126- Extraction of rhodamine in wine

A result of < 0.1 indicates that the brine marker (rhodamine) was not detected at a concentration at or above the LoQ for the method.

Compound	LoQ (μg/L)	UoM (<1 μg/L) (±μg/L)	UoM (>1 μg/L) (±)
Rhodamine	0.1	0.3	30%

Authorisor: Quality Manager

Version: 1.3 Current

Date last modified: 14/12/2016

GM127- Determination of wine aroma compounds in wine and juice

Compound	LoQ (μg/L)	UoM (<40 μg/L) (± μg/L)	UoM (>40 μg/L) (±)
Rose oxide	10	8	20%
Linalool	10	8	20%
Nerol	10	8	20%
Geraniol	10	8	20%
α-terpineol	10	8	20%
Trimethyl dihydronaphthalene (TDN)	10	8	20%
β-damascenone	10	8	20%
β-ionone	10	8	20%

	LoQ (μg/L)	UoM (<20 μg/L) (±μg/L)	UoM (>20 μg/L) (±)
Napthalene	5	4	20%

	LoQ (μg/L)	UoM (<200 μg/L) (±μg/L)	UoM (>200 μg/L) (±)
Ethyl hexanoate	50	40	20%
Ethyl octanoate	50	40	20%
Ethyl decanoate	50	40	20%

Results above the LoQ are reported to the nearest $\mu g/L$.

GM138- Determination of chlorophenols in wine, juice and ethanol extracts using HS-SPME and GCMS

Compound	LoQ (μg/L)	UoM (±) (< 15 μg/L)	UoM (±) (> 15 μg/L)
2-chlorophenol	1	3	20%
4-chlorophenol	1	3	20%
2,4-chlorophenol	1	3	20%
2,6-chlorophenol	1	3	20%
2,4,6-trichlorophenol	1	2	20%
Tetrachlorophenol	1	3	20%
Pentachlorophenol	1	3	30%

Results above the limit of detection are reported to the nearest $\mu g/L$.

GM141- Determination of smoke related glycoside precursors in grapes, wine and juice

The LoQ for all analytes is 1.0 μ g/L. The UoM for results <20 μ g/L is \pm 4.0 μ g/L and for results >20 μ g/L is \pm 15%.

GM153- Determination of 1,8-cineole in wine

1 10-7	Compound	LoQ (µg/L)	UoM (<20 μg/L)	UoM (>20 μg/L)
--------	----------	------------	----------------	----------------

Authorisor: Quality Manager

Version: 1.3 Current

Date last modified: 14/12/2016

Doc ID: 28838

		(±μg/L)	(±)
1,8-cineole	2.0	2	10%

Dithiocarbamates

The limit of reporting for this method is 0.1 mg/L in wine. A result of '< LoQ' indicates that the analyte has not been detected at a concentration equal to or greater than the LoQ.

Total dithiocarbamates includes the summed total of mancozeb, metiram and ziram (and all other pesticides of this chemical class) determined by CS₂ analysis from an acid hydrolysis of the sample.

Phosphorus Acid in wines and juice

Phosphorous acid analysis has been sub-contracted to a third party laboratory for completion.

The limit of quantitation (LoQ) for this analysis is 0.1 mg/kg. A result of '< LoQ' indicates that the analyte has not been detected at a concentration equal to or greater than the limit of quantitation for the analyte or method.

Phosphorus acid in solids

This analysis has been sub-contracted to a third party laboratory for completion.

The limit of quantitation for this method is 0.03 g/kg in DAP. A result of '< LoQ' indicates that the analyte has not been detected at a concentration equal to or greater than the LoQ.

Authorisor: Quality Manager Version: 1.3 Current