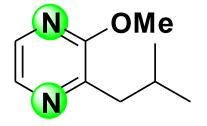
A W R I

Varietal Thiols and Green Characters



Natoiya Lloyd natoiya.lloyd@awri.com.au

Compounds responsible for the green character

The Australian Wine Research Institute

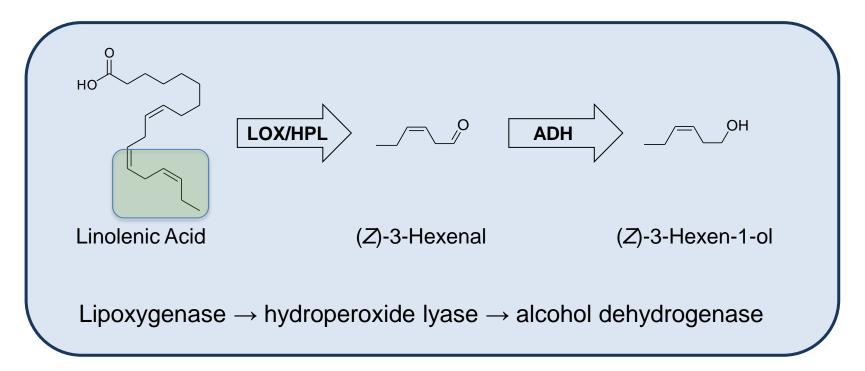
- Methoxypyrazines
 - BMP, SBMP, IPMP
- Sulfur compounds
 - DMS, DES, DMDS
 - 2-IsobutyIthiazole
- C6 compounds
 - (Z)-3-Hexen-1-ol
 - (*E*)-2-Hexenal
 - (Z)-3-Hexenal
 - Hexanal
 - 1-Hexanol
 - Hexyl esters



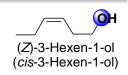
3-Isobutyl-2-methoxypyrazine (IBMP)

> Dimethyl sulfide (DMS)

(*Z*)-3-Hexen-1-ol (*cis*-3-Hexen-1-ol)



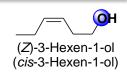
Grape sources of C6 flavours in wine


cis-3-Hexen-1-ol precursors

- Formed from unsaturated fatty acids after berry damage (usually upon crushing)
- Derived from linolenic acid through enzyme cascade

Viticulture

- Enzymatic formation via LOX pathway leads to C6 compounds
- Differs between varieties and during berry development (e.g. Riesling vs Cabernet Sauvignon)
- Highest at pre-veraison in line with unsaturated fatty acid levels decline in linolenic acid with ripening
- Higher in skin (from press cake) than must at all ripening stages

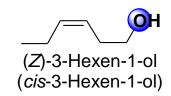


Winemaking

- Time and temperature of skin contact similar extraction from 15-28 °C with max after 10-15 h, continual increase during contact time at 10 °C after 25 h
- Relatively stable but SO₂ and enzymatic activity have effects O₂ needed for formation
- Esterification to the acetate from green (alcohol) to green/floral/fruity (ester)

Storage

- Not affected by storage in presence of oxygen
- Minimal change with storage on lees for up to seven months
- Unaffected by short-term oxidative storage in presence of phenolics
- Slow decline with storage for 210 days but no impact from different SO₂ levels


- Green flavours in wine are caused by a number of different compound classes, with vastly different potencies
- Compound origins are in the grape, often in precursor form
- Viticultural practices and harvesting decisions can impact on green flavours
- Green flavours may be desirable, adding complexity or typicity to wine styles

- cis-3-Hexen-1-ol cut grass, herbaceous, leafy; 400 µg/L threshold
- Typically not found above threshold in most studies
- Found in wine up to
 - 650 µg/L in young red wines (highest in Tempranillo)
 - 800 µg/L in aged red wines
 - 75 µg/L in Gewurztraminer
 - 600 µg/L in some Italian and Spanish white wine varieties (Falanghina and Macabeo)

Varietal thiols – impact odorants

- Polyfunctional thiols are especially potent and have some of the lowest aroma thresholds of any food odorant
- Varietal thiols are important impact odorants in some wines e.g.
 Sauvignon Blanc

Thiol	Perception threshold	Aroma	OAV	
4-MMP	3 ng/L	blackcurrant box tree passionfruit	Up to 30	
3-MH	60 ng/L	grapefruit passionfruit	Up to 210	
3-MHA	4 ng/L	passion-fruit box tree sweaty	Up to 195	

Darriet et al. Flavour Fragr. 1995, 10, 385-392 Tominaga et al. Vitis 1996, 35, 207-210 Tominaga et al. Flavour Fragr. 1998, 13, 159-162

- Individual volatile thiols contribute *tropical* aromas to wine,
 3MH also *citrus* aroma
- Volatile thiol combinations had aromas of *tropical* & *cooked green vegetal* at both levels, and at high levels also *cat urine/sweaty*
- 4MMP does not contribute any distinctive sensory properties at high levels
- At high concentrations 3MHA is responsible for cat urine/sweaty aromas

There was an optimal level of *cat urine/sweaty* attribute for one group of consumers identified

The majority of consumers preferred the samples with 'green' attributes, with a minority strongly preferring the 'fruit' and 'estery' flavours

Clear linking of volatile thiols in Sauvignon Blanc wines, their associated sensory attributes and effects on consumer preference

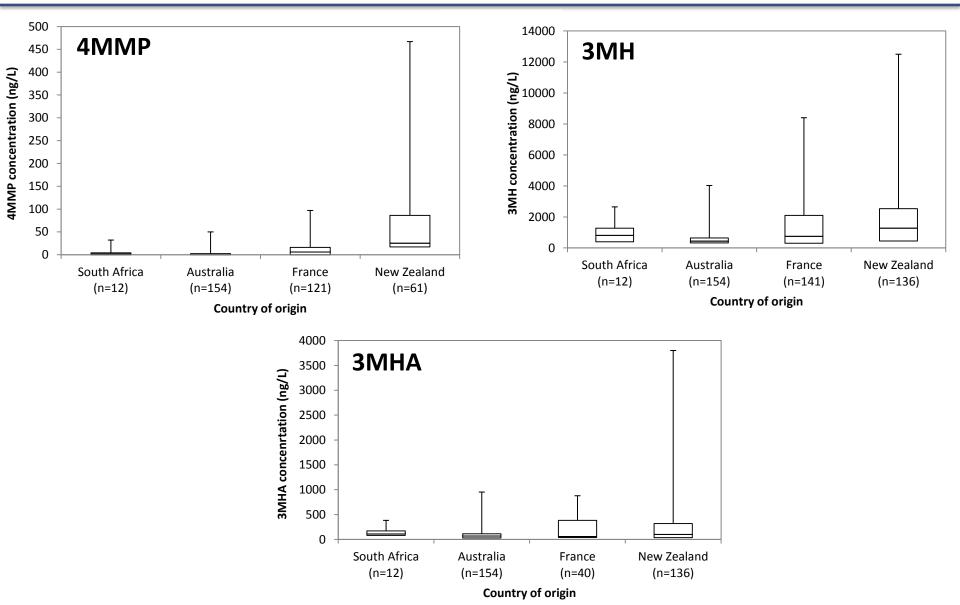
Grape varieties containing volatile thiol compounds

The Australian Wine Research Institute

White varieties

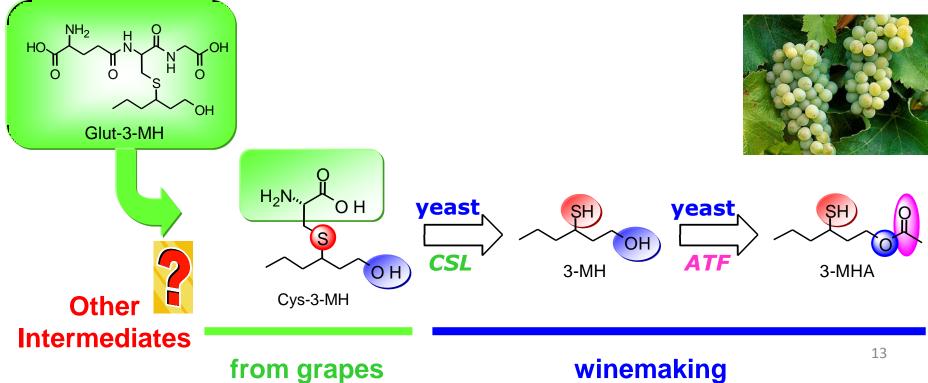
Petit Manseng
Pinot Blanc
Pinot Gris
Riesling
Scheurebe
Semillon
Sylvaner
Токау

Petit Arvine

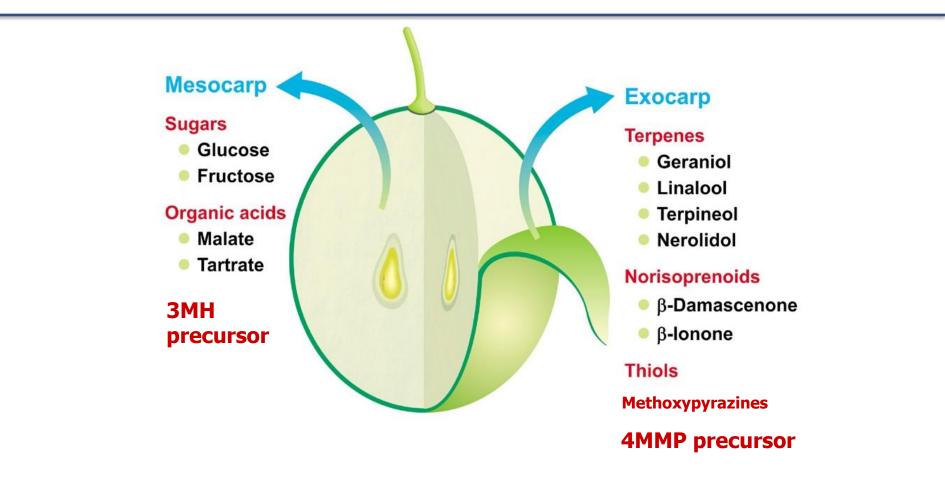

Red varieties

Cabernet Franc Cabernet Sauvignon Grenache Merlot Pinot Noir

Volatile thiol concentrations in wines from around the world


The Australian Wine Research Institute

Varietal thiol formation



- Optimise formation and maximise stability of varietal thiols
- Need to further understand precursor formation (Stress response : Kobayashi et al)
- Yeast plays a key role in thiol release into wine
- Need to understand relationship between precursors and free thiols

Modulation of volatile thiol precursors

- 3MH precursors are mainly found in the skins of grape berries
- 4MMP precursors are mainly found in the flesh of grape berries

Amount of precursors measured in SAB juice:

Cys-3-MH 21 – 55 μg/L

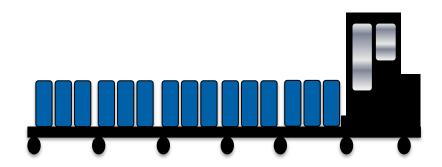
Glut-3-MH 245 – 696 µg/L

Also found precursors in other varieties (in the juice) generally:

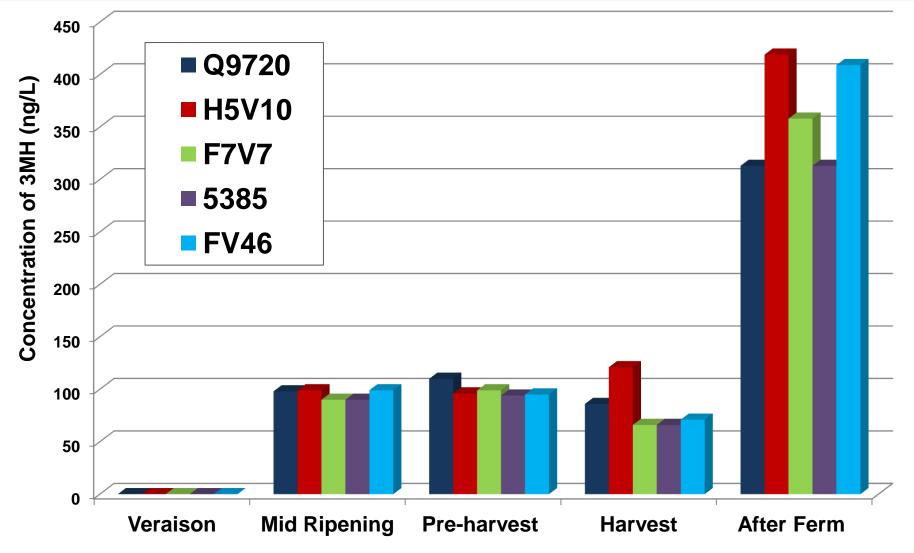
Sauvignon Blanc > Pinot Gris > Chardonnay > Riesling

Capone et al. JAFC 2010, 58, 1390-1395

- 5 different SAB clones in the same location in Adelaide Hills of South Australia
 - Ripening

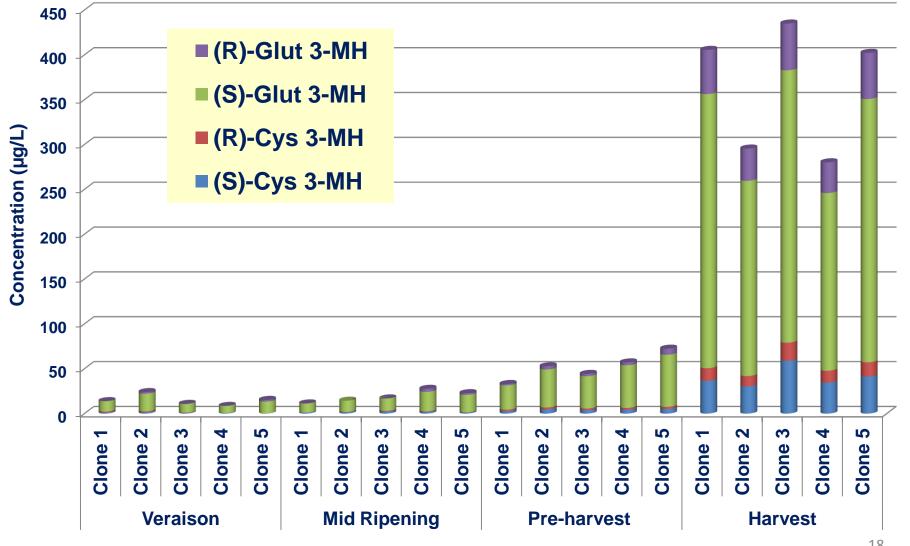


Transportation / Holding



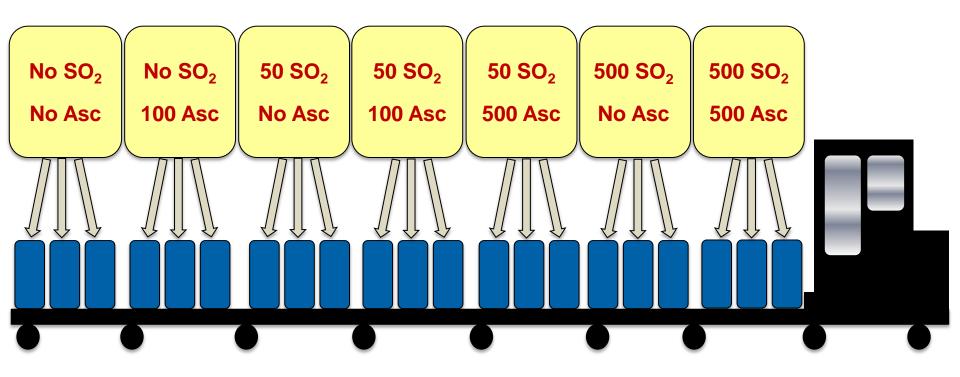
Concentration of 3MH during ripening: Clone effects

The Australian Wine Research Institute



Capone et al. 2011, JAFC. 59: 4649-4658

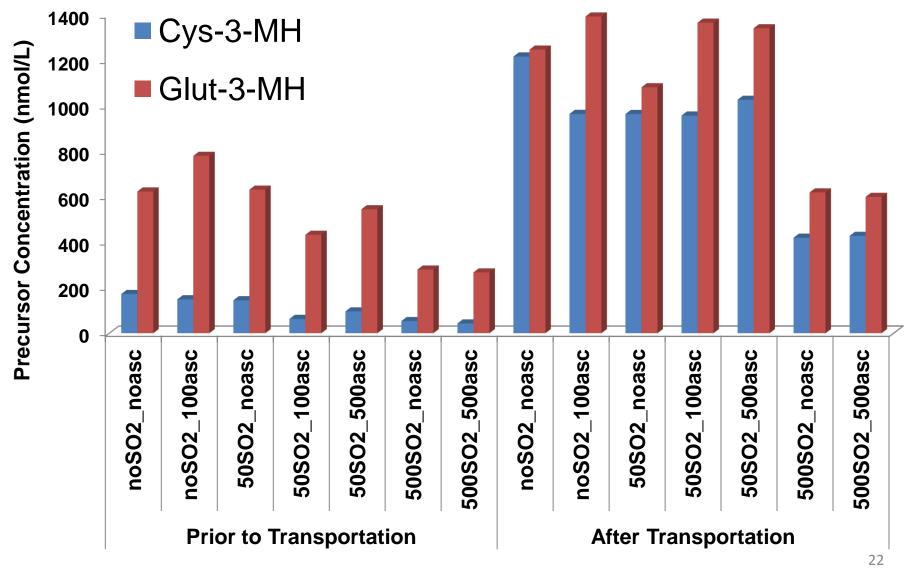
Amount of 3-MH precursors during ripening


The Australian Wine Research Institute

Capone et al. 2011, JAFC. 59: 4649-4658

Effect of transportation on precursor concentration

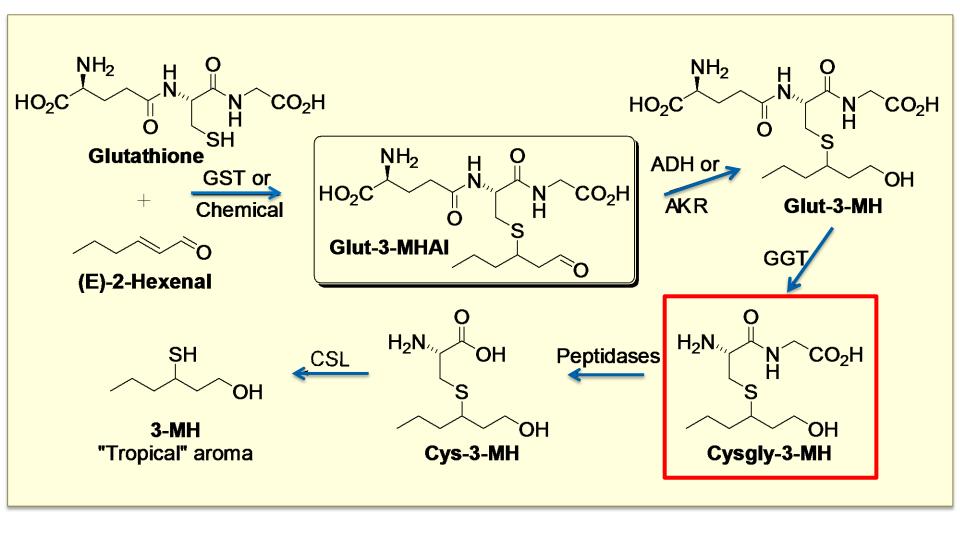
Analysed shortly after machine harvesting then



Effect of transportation on precursors

The Australian Wine Research Institute

Capone et al. 2011, JAFC. 59: 4659-4667


Modulation of volatile thiol precursors

- Glutathione 3MH precursor is more abundant than Cysteine 3MH precursor, regardless of grape variety
- 3MH precursors are affected by ripening.
- 4MMP precursor peaked early in ripening season, at approx. 10° Beame
- Mild water stress & moderate Nitrogen supply increased volatile thiols in wine
- Foliage Copper spray pre-veraison decreased volatile thiols in wine
- Foliar Nitrogen fertiliser with & without Sulfur increased volatile thiols in wine
- Botrytis infection affects the levels of volatile thiols in the wine
- 4MMP precursor found in free run juice & light pressings
- 3MH precursor extracted mainly during skin contact particularly longer periods of maceration and higher temperatures (18-20°C)

The Australian Wine Research Institute

Conclusions – Factors affecting precursor concentration in fruit

The Australian Research Institu

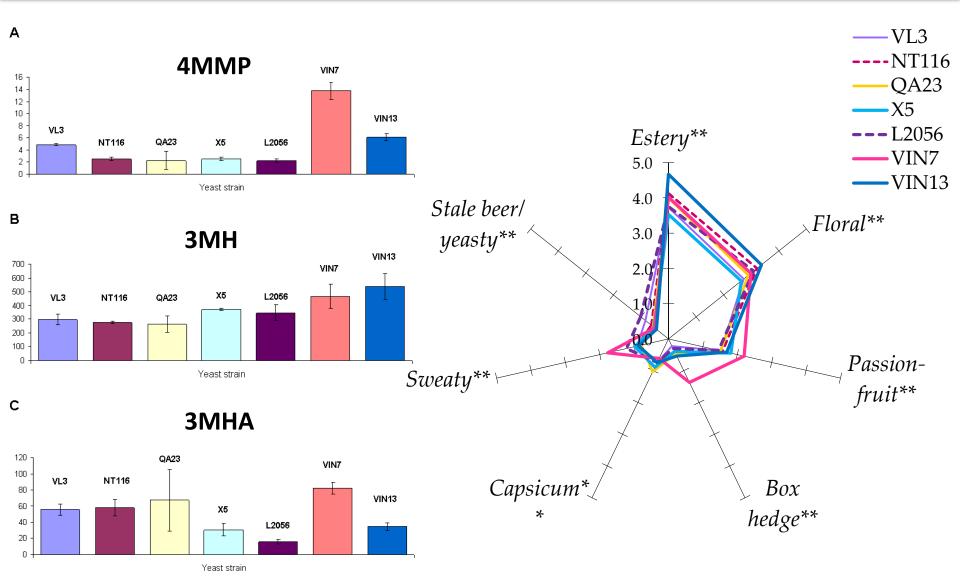
Ripening - Low levels of precursors until commercial harvest

Transportation – inc. precursor for Cys and Glut SO₂ and Ascorbic acid – a combination of both optimum – very high SO₂ suppresses conjugate formation

Glut-3-MHAI – tentatively identified as intermediate between (hexenal + glutathione) and Glut-3-MH for the first time

Cysgly-3-MH – Confirmed presence, is short lived

Modulation of volatile thiols


Yeast selection

- Higher fermentation temperatures increased volatile thiol levels (20° C compared to 13° C)
- 3MH decreased during malolactic fermentation and barrel ageing
- The addition of Sulfur dioxide stabilised 3MH and 4MMP levels in wine
- Cork closures decreased the levels of 3MH and 3MHA in wine
- 3MHA levels decreased dramatically within the first year of bottling
- Addition of Copper as a wine fining agent decreased volatile thiol levels
- In-mouth release of volatile thiol precursors by saliva bacteria

Yeast strains can release differing levels of volatile thiols

Modified from Swiegers et al. (2009)

Modulation of volatile thiols

- Yeast selection
- Higher fermentation temperatures increased volatile thiol levels (20° C compared to 13° C)
- 3MH decreased during malolactic fermentation and barrel ageing
- The addition of Sulfur dioxide stabilised 3MH and 4MMP levels in wine
- Cork closures decreased the levels of 3MH and 3MHA in wine
- 3MHA levels decreased dramatically within the first year of bottling
- Addition of Copper as a wine fining agent decreased volatile thiol levels
- In-mouth release of volatile thiol precursors by saliva bacteria

Be able to predict concentrations of volatiles from:

THE UNIVERSITY OF ADELAIDE

The Australian Wine Research Institute

AWRI

Dimitra Capone Kevin Pardon Toni Cordente Yoji Hayasaka Ellie King Katryna van Leeuwen Cory Black

UA

David Jeffery Mark Sefton

Industry Partners

Casella Winery Steve Warne Frank Mallamace

Australia's grapegrowers and winemakers through their investment body, the Grape and Wine Research Development Corporation, with matching funds from the Australian government

Sensory impact of 3-MHA

- 3-mercaptohexyl acetate
 passionfruit, box tree, sweaty
- ✤ 4 ng/L threshold
- Found in Aust. wine up to 3,000 ng/L
- Found in NZ wine up to 12,000 ng/L
- Final concentration in your glass 740 ng/L

The Australian Wine Research Institute

Sensory impact of 3-MH

- 3-mercaptohexen-1-ol
 - grapefruit, passionfruit, leafy
- 60 ng/L threshold
- Found in wine up to 210 ng/L
- Final concentration in your glass 7040 ng/L

Sensory impact of thiol mix (3-MHA + 4-MMP + 3-MH)

- Individual aroma characteristics
 - grapefruit, passionfruit, leafy, box tree, sweaty
- Combined aroma characteristics
 - cooked green veg, tropical

Spiked levels in your wine:

- ✤ 3MHA 740 ng/L
- ✤ 3MH 7040 ng/L
- ✤ 4MMP 40 ng/L

