

Did you know that DAP can strongly affect the flavour profile and style of wine Paul Henschke

Practical management of Brett in the winery Eric Wilkes

Morning Tea

Lunch

Avoca/Pyrenees Seminar

Thursday 15th August, 2013

Rotten egg, cabbage and rubber: compounds responsible for reductive off-flavours in wine Leigh Francis AWR

Afternoon Tea

A W R I

Did you know that DAP can strongly affect the flavour profile and style of wine?

Paul A Henschke Principal Research Microbiologist

Simon Schmidt, Radka Kalouchova, Maurizio Ugliano*, Cristian Varela, Sally-Jean Bell*, Leigh Francis *formerly AWRI

v Key yeast nutrient

- determines biomass formation
- **v** Metabolic regulation
 - regulates carbon metabolism
 ≡ alcoholic fermentation

v Aroma/flavour compound formation

- esters, alcohols, carbonyls, acids, etc
- **v** Sulfur metabolism regulation
 - H₂S, mercaptans

v Arginine-Urea metabolism regulation

- ethyl carbamate

The Australian Wine Research Institute

FAN quantitation NOPA assay (AWRI) NIR

NH₃ quantitiation Enzyme kit (AWRI) Electrode

AWRI Commercial Services provide YAN analysis service

Effect of vintage year and grape variety on juice nitrogen content

The Australian Wine Research Institute

YAN varies from year to year, being affected by the season and vineyard management practices

YAN analysis should be carried out over, at least 2 consecutive seasons, on vineyards that give fermentation problems

Source: Gockowiak & Henschke (1992) Aust. NZ Grapegrower Winemaker (340):131-138

Fermentation response to initial [YAN] in clarified must

The Australian Wine Research Institute

Source: Salmon (1989) Appl. Environ. Microbiol. 55:953-958 Grape juice YAN typically varies between 50 – 400 mg/L, producing fermentation rates at risk of being slow or stuck, at one extreme, to too fast, which can cause rapid temperature increase and loss of aromas

Optimum fermentation rate depends on winemaking objectives but YAN should typically fall between 150 – 350 mg/L, using cooling to control required rate

The Australian Wine Research Institute

Yeast demand for YAN

YAN depend on strain/fermentation conditions

(eg grape solids, aeration, warmer conditions, etc affect demand)

A Minimum YAN

= 100 - 150 (mg/L)

lower for reds / higher for whites

- a Optimum YAN
- = 150 350

depends on w/m objectives

å Maximum YAN = 350 - 450 (mg/L)strain dependent

What are the flavour implications of DAP added to juice/must YAN?

Aim: to establish relationships between

- å Wine type (Chardonnay, Shiraz)
- å Yeast strain
- **å YAN (initial, adjusted with DAP)**
- **å Basic wine chemistry**
- **å Wine flavour**

Effect of DAP addition in Chardonnay <u>– fermentation kinetics</u>

Juice: Chardonnay (cold settled, filtered) YAN: 160 mg/L, adjusted to 320 and 480 mg/L with DAP Yeast: AWRI 796, 18°C

Juice YAN affects: • yeast growth (biomass)

- fermentation rate and
- fermentation duration (up to 50% reduction)

Chardonnay – impact of DAP – YAN on Basic Wine Chemistry

Source: Henschke et al. Wine Viti J (2012)

Effect of DAP addition in Chardonnay – yeast aroma compounds

The Australian Wine Research Institute

- Esters: Increase with YAN, then plateau at high YAN
- Higher alcohols: Inverse relationship with YAN
- Volatile acids: Complex relationship with YAN

Effect of DAP addition in Chardonnay <u>– wine aroma profile</u>

Risk of large DAP additions: can lead to masking varietal character

Comparison of Organic N (Amino acids) vs Inorganic N (NH₄+) addition on Chardonnay Wine Aroma Profile

The Australian Wine Research Institute

Chardonnay – impact of DAP – YAN

Effect of DAP addition in Shiraz <u>– fermentation kinetics</u>

Effect of must YAN on Shiraz – yeast aroma compounds

Esters (fruity and floral) increase with increasing YAN
Higher alcohols largely unaffected by YAN

Source: Ugliano et al. Dec 2007 A&NZ WIJ

Effect of DAP on Shiraz wine flavour

Effect of DAP on Shiraz wine flavour

DAP and Shiraz volatile compounds

YAN and wine aroma Timing of H₂S depends on yeast strain

- Yeast Assimilable Nitrogen (YAN), as DAP, is a powerful tool to manage:
 - > fermentation kinetics,
 - > aroma formation (type & intensity) during fermentation,

(high yeast esters can however mask varietal character) and

> wine style

(complex -> clean, fruity, estery -> solvent, ester taint)

- Addition of nitrogen <u>does not systematically eliminate</u> the occurrence of reductive off-flavours but the concommitant increase in esters tends to mask reduction.
 - Moderate DAP can increase reductive off-flavours in some combinations of juice/must and certain yeast strains

▼ Project scientist – Dr Diego Torrea (Chardonnay) (formerly AWRI)

- Dr Maurizio Ugliano (Shiraz) (formerly AWRI)
- Dr Simon Schmidt (Yeast nutrients)
- Dr Cristian Varela (Yeast development)
- Vineyard N trial site: Dr Sally-Jean Bell, Orlando Brian White
- ▼ Sensory analyses: Dr Leigh Francis and team
- **v** Fermentation and analysis: Radka Kalouchova
- ✓ Project supervisor Dr Paul Henschke

Research at The AWRI is supported by Australia's Grapegrowers and Winemakers through their investment agency the Grape and Wine Research and Development Corporation, with matching funds from the Australian Government.

Further reading

Bell, S.-J., Henschke, P.A. (2005) Implications of nitrogen nutrition for grapes, fermentation and wine. Aust. J. Grape Wine Res. 11: 242–295.

Gockowiak, H., Henschke, P.A. (1992) Nitrogen composition of grape juice and implications for fermentation: results of a survey made in N-E Victoria. Aust. Grapegrower Winemaker (340): 131, 133–138.

Henschke, P.A., Varela, C., Schmidt, S., Torrea, D., Vilanova, M., Siebert, T., Kalouchova, R., Ugliano, M., Ancin-Azpilicueta, C., Curtin, C.D., Francis, L. (2012) Modulating wine style with DAP: case studies with Albariño and Chardonnay. Aust. N.Z. Grapegrower Winemaker 581, 57–63.

Torrea, D., Varela, C., Ugliano, M., Ancin-Azpilicueta, C., Francis, I.L. Henschke, P.A. (2011) Comparison of inorganic and organic nitrogen supplementation of grape juice - effect on volatile composition and aroma profile of a Chardonnay wine fermented with *Saccharomyces cerevisiae*. Food Chem. 127, 1072–1083.

Ugliano, M., Henschke, P.A., Herderich, M.J., Pretorius, I.S. (2008) Nitrogen management – critical for wine flavor and style. Pract. Winery Vineyard (May/June), 6–25.

Ugliano, M., Fedrizzi, B., Siebert, T., Travis, B., Magno, F., Versini, G., Henschke, P.A. (2009) Effect of nitrogen supplementation and *Saccharomyces* species on H_2S and other volatile sulfur compounds in Shiraz fermentation and wine. J. Agric. Food Chem. 57, 4948–4955.

Ugliano, M., Siebert, T., Mercurio, M., Capone, D., Henschke, P.A. (2008) Volatile and color composition of young and model-aged Shiraz wines as affected by diammonium phosphate supplementation before alcoholic fermentation. J. Agric. Food Chem. 56, 9175–9182.

Practical management of 'Brett' in the winery

Eric Wilkes – Group Manager Commercial Services Chris Curtin – Research Manager

'Brett' = spoilage?

Dekkera bruxellensis, 'Brett', and red wine

Various bacterial & yeast species (including *Saccharomyces*)

Dekkera (Brettanomyces) bruxellensis

Vinification time

We isolated Brettanomyces from 31 winemaking regions of Australia

You CAN manage the risk of 'Brett' spoilage in the winery

Trend in 4-Ethylphenol concentrations in Cabernet Sauvignon wines from three Australian producers 1997 - 2001

NOTE: Wineries A and B first contacted the Institute with regard to strategies for the control *Brettanomyces* in 1998, and winery C in 1999. Many other producers are seeing a similar trend from 2000 onwards

The incidence of 'Brett' in Australian wine

The Australian Wine Research Institute

The incidence of 'Brett' in Australian wine...

Scientific literature

What worked for early adopters

Research

What are the key factors?

What are the key factors?

Now 4-EP is being formed at twice the rate

What are the key factors?

Now 4-EP is being formed at **four times** the rate

The 'Brett' control strategy focuses on **minimising** Brettanomyces population size entering the winemaking process, **controlling** population growth, and where required, **removing** the population

How can you **minimise** population size?

SO₂ @ crusher

General sanitation

Barrel sanitation

How can you control population growth?

The Australian Wine Research Institute

- Avoid residual sugar:
 - Sest practice fermentation management
 - Strong starter culture
 - S Aerate when most active i.e. at least one aerative racking or rack & return
 - Keep temperature of wine within two degrees of fermenter during pressing & at least 12 hours afterwards

How can you control population growth?

The Australian Wine Research Institute

- Minimise residual nitrogen:
 - Section Brettanomyces uses a range of N-sources, including proline
 - S Excess DAP *might* increase risk of 'Brett', or other microbial spoilage
 - Why do you need to add DAP? N-deficiency or other fermentation management issues?

The Australian Wine Research Institute

The Australian Wine Research Institute

- **v** Barrel management:
 - Monitor regularly
 - Top with good quality, non-'Bretty' wine kept at ~250-300ppm TSO₂
 - S New barrels can be more prone to 'Brett'
 - Program to empty, clean, refill on the same day

- **v** Minimise turbidity:
 - **§** Turbidity = less effective SO_2
 - S Delayed racking increases lees contact (++nutrients)
 - S Delayed racking means greater loss of SO₂
 - When racking take care not to introduce lots of dissolved oxygen

How can you **remove** the population?

The Australian Wine Research Institute

- Things to note about SO_2 use:
 - It's all about timing & magnitude!
 - Immediately after MLF, clarify and make a large SO₂ addition (60 mg/L)
 - Son't make small incremental additions
 - SO₂ is your friend, so don't be afraid to use it appropriately

- **v** Things to note about SO_2 use:
 - A low ratio of Free:Total SO₂ indicates microbial activity (and /or oxidation), while effective SO₂ management gives high ratios
 - Solution of any addition is yielded as free SO₂ and only the molecular SO₂ component is active
 - **§** The higher the turbidity, the lower the free SO_2
 - S At least 5mg/l SO₂ will be lost during careful transfers
 - § Wine stored in new barrels loses SO₂ faster than wine stored in old barrels, and hot water or steam cleaned barrels lose SO₂ faster than rinsed barrels

The Australian Wine Research Institute

We isolated Brettanomyces from 31 winemaking regions of Australia

The Australian Wine Research Institute

"In practice, a free SO₂ concentration of 30 mg/L always results in the total elimination of all viable populations after 30 days"

P.Ribereau-Gayon, Y.Glories, A.Maujean and D.Dubourdieu 2000 Handbook of Enology Volume 2 The Chemistry of Wine Stabilization and Treatments

Concentration of molecular SO₂ required to kill yeast: Saccharomyces cerevisiae0.825mg/l Dekkera / Brettanomyces 0.825mg/l

Boulton 1998 (from Beech et al 1979)

How can you **remove** the population?

Filtration & clarification

- If a haze is caused by viable microorganisms, filtration prior to bottling is highly recommended
- S "A well performed filtration of the appropriate grade does not have a negative impact on wine quality"
- S Even if there were a negative impact, it would be massively outweighed by the potential for wine spoilage

The Australian Wine Research Institute

If you have a 'Brett' problem, don't try to solve it by addressing one area only

'Brett' can be successfully managed during winemaking through implementation of a <u>holistic</u> control strategy

- V Outside of the winery, where does *Brettanomyces* live? Does it come from the vineyard?
- ▼ Are there any strains of *Brettanomyces* that are...less bad...?
- Why can some strains tolerate higher levels of sulfite than others, and could we end up with a 'super-bug'?
- ✓ Does SO₂ really kill *Brettanomyces*? Other than SO₂, what else can be used to control *Brettanomyces* populations?
- How can I monitor 'Brett' in the winery?

- Jenny Bellon, Toni Cordente, Adrian Coulter, Geoff Cowey, Miguel de Barros Lopes, Leigh Francis, Peter Godden, Matt Holdstock, Emma Kennedy, Robyn Kievit
- ▼ Many <u>anonymous</u> industry collaborators

This work was financially supported by Australia's grapegrowers and winemakers through their investment body the Grape and Wine Research and Development Corporation, with matching funds from the Australian Government.

The AWRI is part of the Wine Innovation Cluster

Incidence of 'Brett' in Australian wine

Alarm bells were ringing

The Australian Wine Research Institute

Cost to sequence your genome

National Human Genome Research Institute

Future-proofing against 'Brett'

VESDA- Developing tools to assist land mangers and industry.

Ricky James- Centre for Expertise in Smoke Taint Research. DEPI, Rutherglen.

> Department of Environment and Primary Industries

Overview

Tools for Industry

Tools for land managers.

Smoke taint research relatively new so nothing fit for purpose.

Department of Environment and Primary Industries

How much smoke????

Determine the relative impacts of controlled burning and wildfire.

•Evaluation of smoke detection monitoring as a tool for measuring smoke intensity and duration of presence and therefore exposure to fruit.

What we know/what we want to know???

Level of smoke taint is a combination of-

- Intensity of smoke- just like wine, very subjective, need to put a number on it.
- •Duration of exposure-how long has the smoke been in the vineyard?

VESDA

- •Very Early Warning Aspirating Smoke Detection
- •Early warning alarm systems for sealed electrical and telecommunications cabinets.
- •Retro fit units to be used in external environment to monitor smoke in vineyards.
- •Ability to objectively measure smoke intensity over time and log this data over extended periods and multiple smoke events.

File Edit View Trend Graph Connection Help

🗅 😅 🖬 🐚 📾 📾 🚅 📾 🗐 🗘 🍊 🖋 🌮 🌋 💡

Trend Graph: Boyntons Feb 7th Graph.vgph

File Edit View Trend Graph Connection Help

Trend Graph: Boyntons 12th.vgph

Positives and Negatives

- •+ Affordable price for industry- approx \$2500
- •+ Logs intensity and duration
- •+ Simple installation and data collection
- •+ Real time data to monitor controlled trials.
- •+ Local production, knowledge and experience.
- Not 'fit for purpose'. External conditions.
- •- False positives- dust, moisture, Winnie Blues
- •- Very sensitive- logs every change in concentration
- •- Correlations with EPA air Quality data.

Next Steps

•Adjust software to enable more suitable and reliable data to be collected.

- •Correlation between Obs/m and visual horizon data.
- •Ability to create a network across a region when best opportunity arises
- •Monitor numerous locations in the one region to compare smoke intensity, duration and affect on fruit.

Who, What and Where??

Project Management Plan- Objective 6

Develop and evaluate a risk assessment tool to enable industry and land managers to determine suitable burning periods based on varietal sensitivity and grapevine development.

Fit for purpose mapping for land managers and industry

- VLUIS- Victorian Land Use Information Survey
- Biosecurity Victoria- PIC Codes
- DEPI- Fire Management
- Victorian Wine Industry
- DAFWA- STAR Model

144.159 -37.888 Decimal Degrees

Wine Related Research @ DEPI

Smoke Taint- Mark Downey

Tannin measurements in Winegrapes and resulting wines- Rachel Kilmister

Impacts of global warming on grape phenology, vine growth and grape quality- Rachel Kilmister

Soil Health- Ian Porter and Jacky Edwards

Phenology – Veraison Heated Chamber @ +2 DegC.

23/12/11

29/12/11

4/1/12

20/1/12

Primary Industries Victoria

Department of Environment and

Department of Department of Environment and Primary Industries

Strategies for Successful MLF

What can you do to get that MLF through efficiently (and before Christmas!)?

Eveline Bartowsky

Senior Research Microbiologist

What is a successful MLF?

Different for everyone

- Malic acid metabolism
 - Rapid
 - Complete
- Sensory changes
 - None
 - Buttery character
 - fruity & ⁻ vegetative characters
 - Improved mouthfeel
- Delayed/failed MLF can increase the risk of wine spoilage, especially Brett and biogenic amines

As a reminder ...

- **v** Bacteria mediated
 - **§** Reduce wine acidity
 - § Microbial stability
 - Sensory changes

Alcoholic fermentation • When can it occur? Cell growth (log cells/mL) 8 1. Indigenous MLF 6 2. Pre-fermentation 5 Spontaneous § 3. Simultaneous Inoculated 4 Q (Co-inoculation) 2 4. Late fermentation 5. Post fermentation 0 Vinification time (Sequential)

MLF is generally more difficult to manage that AF

The key to MLF

Under the microscope

Don't under estimate the power of the microscope

Time (h) × 100 6

V Ethanol affects cell wall composition

Monitor temperature of wines Ø regularly

Strain AM20 Asmundson & Kelly (1990)

- ▼ LAB generally are more temperature sensitive than yeast
- ✓ Most O. oeni strains grow slowly $< 15^{\circ}C$

Additive effect of crucial MLF factors

Adapted from Lallemand

Why inoculate for MLF?

✔ Indigenous

- § Diverse population
- § Spontaneous MLF
- Induction can be unpredictable
- Ø Unpredictable quality
- Possible infection by spoilage microorganisms
- Ø Risk of off-flavours, amines, mousy ……
- Low cost & minimal resources
- Sisk of 'Brett' development

- Unique strain
- Inoculation high cfu/mL
- Induction at a chosen time
- § Predictable kinetics
- Sensory & quality attributes
- Shorter lag phase
- Ø Better control
- Decreases potential of spoilage LAB (& AAB)
- Strains selected against negative characteristics

Commercial Malolactic Starter Cultures

The Australian Wine Research Institute Support	ting Australian grape and wine produ	The A	ustralian Win rch Institute	ie	Supporting Aust	ralian grape and wine p	raducers 🛐 💽
About Us Research & Development Industry Support and Education Commercial Se	envices Information Services Our Pecole & En					Herre	Contacta
Industry Support and Education > Winemaking resources > Winemaking produ	cta and suppliers	About Us Alesearch	& Development In	dustry Support and Education	Commercial Services Info	ormation Services Our People	a Employment
Winemaking products and suppliers set the criteria for the search using the fields below. Any of all fields may be left Brid: search: Advanced search	blank.			remaking resources > withen s and suppliers		piers	
Product Name (whole an part)		NAME	FORM	PRODUCT	CONTAINER STZE	RANCE	SUPPLIER
Produit Type (Backeda	Ø	1-Stop Alphia	0.ceni - 24 H L- Step@ Acclimatisation	INFORMATION Contributes to semiory complexity and mouthfeel. Reduces green and herbacesus flavours.	various	UNITE .	Lallemand Australia Pfy Lt6
Exactly or Decit to dollarity It can be difficult to keep up to date with what products are available for the pro- stors should be aware that the statistage is not a complete list of all products are by the sepplers themselves; and the information has not been verified for acc, name, form, purpose, container size and supplier details are given. For yeast, t purpose, range and supplier details are given. To search, set the oriteria for the blank. • <u>Commential wine yeast stoains available from the Avikti</u> • <u>General information on the use and properties of pacts and backgrown</u> enzyme • <u>Semeral information</u> on the use and properties of yeast. And backgrown enzyme			0.seni - 24 il 1- Stepiji Acclimatisation		vafoue		Lallam and Australia Pty Ltd
		Form for i	nocula	tion			Lallemand Assiftatia Pty Ltd
	Oenococcus oeni – 37 strains				Lailemand Australia Pty		
D 2013 AWRI Home Com		Direct – freeze dried & frozen				Laffernarid Australia Pty	
		Acclimatisation – 12hr & 24 hr				LES.	
						can be < 14.2% dication, from Alc.	ANEROX
	Lactobacillus p	plantarum	– 1 stra	ain			
		Direct – fr	eeze d	ried			
	Updated May 2013	3					

Don't under estimate the importance of correct product management

- Store correctly
 -18°C
- Use by the 'use by date'
 - Up to ~ 24 months

VINITION CHIS VINITI

- ✓ Rehydrate according to the instructions
 - § Temperature of water or wine
 - Length of rehydration

Importance of correct rehydration

Gockowiak & Henschke AJGWR (2003)

Conditions that favour bacteria growth favour MLF

Why consider Co-inoculation?

- Enough nutrients
- Ethanol not a factor
- Bypass difficult conditions
- Stabilise faster
- Reduced microbiology risks
- Perceived more fruitier, balanced, integrated

	Pro (Advantages)	Con (Risks)
After AF	Ø No VA ↑Ø Easy to control	 Stuck due to high alcohol Nutrients depleted Production anti-LAB inhibitors
With AF	 Ethanol not high Most FSO₂ bound Heat of AF 	Potential yeast/bacteria antagonism

Co-inoculation

		Juice	Y1	Y2
Brix / Alcohol	° / %	21.6	12.6	12.5
Glu + Fru	g/L		1.1	7.2
рН		3.26	3.4	3.38
TA pH 7.0	g/L	5.2	4.9	5.3
TA pH 8.2	g/L	5.4	5.1	5.6
YAN	mg/L	272	93	85
Ammonia	mg/L	97	8	8
a Amino N	mg/L	192	86	78
SO ₂ (free)	mg/L	12	< 4	< 4
SO ₂ (total)	mg/L	42.5	50	51
L-malic acid	g/L	3	2.79	2.87
Co-inoculat ⁿ			4 wks	6-8 wks
Sequential			4-8 wks	-
10 7			_□ 25	
8 - 20				1
				·
Y1 15 ಲ 🧀				
at 10 te 10			ratu	
2 -			- 5	mpe
0	10	20	30	۳ ا
-2	10	20	⁵⁰ 0	

Barossa Valley 17°C

Co-inoculation can help bacteria adapt to 'harsh' wine composition

- V Yeast may
 - S Deplete complex nutrients & growth factors required by bacteria
 - Essential amino acids
 - § Release of bioactive metabolites
 - SO₂
 - Fatty acids (C6, C8, C10)
- Ø Conditions that favour yeast growth (AF) tend not to favour MLF
 - **§** Release of metabolites
 - Amino acids, vitamins, peptides

>>

• Mannoproteins

Grape must with low nutrients (higher DAP usage) May cause yeast to produce increased levels of SO₂

May inhibit MLF

Intrinsic incompatibility by Yeast II for MLF Addition of nutrients may not solve incompatibility

Yeast and bacteria ?

2008

Days after inoculation

The Australian Wine Research Institute

	Condition	Wine type	Limiting	Optimal
	Temperature (°C)	White	<16, >24	18 - 22
		Red	<15, >25	18 – 22
ALLA I	рН	White	< 3.1	> 3.2
		Red	< 3.0	> 3.1
	Alcohol (% v/v)	White	13.5	< 12.5
EtOH		Red	14	<13
Sulfur Atomic Number: 16 Atomic Massis 22.08	Total SO ₂ (ppm)	White	> 30	< 15
Oxygen Atomic Number: 8 Atomic Mass: 16		Red	> 30	< 15
	Microbial			
ZÌ	Bacteria	Follow manufacturer's instructions		
P	Yeast	Check compatibility with ML bacteria		

Confirm wine parameters by measurement/analysis

What to do to ensure a successful MLF

- Check your wine parameters
 - § pH, alcohol, SO₂, temperature
- Select a ML strain to suit your purposes
 - Solution Tolerance to wine pH, alcohol & SO₂
 - § Sensory
- Co-inoculation
- Yeast strain
 - § High nutrient demand?
 - § Produces 'toxic' compounds?
 - Sompatibility with the ML strain?

- Take time to prepare your ML culture
 - S Rehydration
 - Consider pre-adapting the bacteria to your wine conditions

✔ Microscope

- § don't be afraid to use it
- ▼ Further information
 - S AWRI website for products
 - S Consult ML producer & website
 - § AWRI

Acknowledgments

v AWRI Wine Biosciences

MLF Team

- Peter Costello
- S Caroline Abrahamse
- § Jane McCarthy
- S Paul Henschke
- S Holger Gockowiak (former member)
- ✓ The Australian Wine Research Institute, a member of the Wine Innovation Cluster in Adelaide, is supported through their investment body, the Grape and Wine Research Development Corporation, with matching funds from the Australian government.

The Australian Wine Research Institute

Causes and Management of Slow and Stuck Fermentations

Paul Henschke

Peter Godden

and AWRI Industry Development & Support team

- Con Simos
- Adrian Coulter
- Geoff Cowey
- Matt Holdstock

- ▼ A common seasonal problem, but exacerbated by hot weather
- Affects most wineries at some stage, both in Australia and overseas
- **v** White, red & sparkling wines, in tanks & barrels
- <u>Multifactorial problem</u>, including yeast, nutrients, toxic substances and fermentation conditions/management
- Most (all ?) yeast types are affected, including benchmark EC1118/PDM/Prise de Mousse
- Expensive in resources (time, energy, yeast, tank space) and loss of quality
- >>> This talk contains practical information on how to reduce the risk

Sub-optimal fermentation profile

Environmental changes during fermentation major stresses to which yeast must adapt

Factor	Grape juice	Wine	
Sugar (g/L)	180 – 260	0-4	
Alcohol (% v/v)	0	10 – 16	
Nutrients:			
YAN (mg N/L)	50 - 300	<50	
Oxygen (ppm)	0-9	0	
Conditions	Nutrient rich	<i>Nutrient poor High conc. toxic products</i>	

Failure to adapt results in sub-optimal fermentation

▼ Delayed onset of fermentation

Causes:

- § Poor quality starter culture
 - Low viability or low cell count/inoculation rate
 - Poor physiological condition (low metabolic rate)
- § High SO₂, resulting in growth inhibition until level of free SO₂ has decreased below a critical point

Diagnosis:

- Series Perform a microscopic cell count before & after treating the sample with vital stain, eg methylene blue (see lland et al. 2007)
- § Viability <75% indicates poor yeast culture or must toxicity, eg SO₂
- § Measure must/juice SO_2 ; should be <10-15 mg/L free SO_2

Methylene blue staining of yeast culture assessing culture viability

- Methylene blue is a dye that is used to differentiate live and dead yeast cells in a culture.
- Methylene blue is a redox sensitive dye, such that metabolically active cells reduce it to the colourless form; viable cells are highly reductive.
- Dead cells (non-metabolically active) stain blue, ie the oxidised form.
- Population viability is a strong indicator of culture health:
 - Healthy culture typically contains>95-98% viable cells
 - \$ <75% viability indicates toxicity, which can lead to stalled fermentation

Consult Iland et al (2007): Microbiological analysis of grapes and wine: techniques and concepts

▼Slow (continuously) fermentation

Causes:

- S Low yeast biomass or cell number
- S Low budding index
- S Low level of key nutrient, typically YAN, O₂ or lipids

Diagnosis:

- Sonfirm by microscopic cell count:
 - 0% FP (Fermentation Progress) Count should be >1-5x10⁶ cells/mL;
 - 35% FP should exceed 50x10⁶ cells/mL
- S Measure juice/must YAN, should exceed 100-150 mg N/L
- § Failure of aeration or grape solids addition to stimulate fermentation suggests deficiency of a key nutrient, eg YAN

Causes of sub-optimal fermentation

The Australian Wine Research Institute

▼Sluggish & Stuck fermentation

Causes:

§ Multifactorial problem

Interaction between:

- 1. <u>yeast strain</u>
- 2. juice/must (nutrients, toxic substances) and
- 3. <u>fermentation conditions/management</u> (under control of winemaker)
- S Most yeast types are affected, including the industry benchmark strains EC1118 / PDM / Prise de Mousse

Diagnosis: complex & the subject of this talk

Sub-optimal fermentation kinetics Risk Factors

The Australian Wine Research Institute

Yeast-related factors	 incorrect choice (alcohol stress tolerance)
	 poor quality starter culture
	 rehydration / reactivation
	 viability / vitality
	 unsuccessful inoculation
	 indigenous microflora
	degree of must clarification
	 temperature stress
	 vigour and sedimentation
Nutrient deficiency	• yeast assimilable nitrogen (YAN)
Nutrient denoteries	
	 oxygen / lipids vitamins
	• minerals
Inhibitors	high concentration of sugar (high ° Be)
	• high ethanol
	 fatty acids (acetic acid & mid chain length FAs)
	• SO ₂
Adapted from Happeblie (1007)	• toxic (killer) proteins/other organisms
Adapted from Henschke (1997) ASVO Seminar Procs pp. 30-38,41	 residues (pesticides, cleaning agents)
A list of Alcohol Tolerances of Fermentation Yeast*

choice guide only – data most relevant to 'cellar bright' juice ferments[†]

Sugar Conc (g/L)	Degree Baume		Maximum alcohol produc'd (% v/v)	Strain – Commercial name
200	11	20	12	Uvaferm CEG, CM UCD 522-Montrachet CH158-Siha 4
218	12	21.5	13	Hefix 1000 VRB
235	12.7	23	14	Fermivin Simi white Lalvin Actiflore, Assmannhausen, B, ICV D-47, ICV K1, CSM, M1107, M2, QA23, T306 Maurivin AWRI 796 Zymaflore VL1, VL3a
>250	>13.5	>24.5	> 15	Fermivin PDM, Fermichamp Lalvin L-2056, L-2226, L-2323, L-43, V1116, BDX, BM45, CY3079, D254, DV10, EC1118, M1, RC212, S6U, Syrah, O 16, Agglo, Enoferm R2, Uvaferm 43 IOC 18-2007, Prise de Mousse, Maurivin PDM, AWRI 350, AWRI R2 WET 136-Siha 3 Uvaferm PM
			unspecified	Siha 5

Source: Cunier, ITV Manual (1994) ; Bold, recommended for restarting fermentation

*Measured as the maximum [EtOH] produced by standardised fermentation test, with surplus sugar.

†Presence of grape solids (phytolipids) or oxygen/YAN can increase yeast tolerance to alcohol

Active Dried Yeast - rehydration/reactivation (1)

- Follow manufacturers instructions precisely
- Choice of rehydration medium

•

- Mineral water is preferable to rain water
- If using tap water, remove Cl₂ by boiling/sparging when necessary
- Water with grape sugar concentrate (10% sugar)
- Diluted preservative-free (SO₂) grape juice (sterile)

Temperature of medium should be 38-40 ° C

- measure temperature with a thermometer
 (optimum for reformation of yeast lipid membranes)
- For high risk juices: high sugar (>13 Be), bright (low solids), low YAN (<150 mg/L), to be fermented cold (<15C) consider proprietary 'inactivated yeast' nutrients rich in sterols

•

.

•

Active Dried Yeast - rehydration/reactivation (2)

- Add yeast slowly to container with large surface area. Avoid clumping - clumping produces nonwetted, and hence, non-rehydrated yeast
- <u>Avoid vigorous (mechanical) stirring during re-</u> hydration step, which reduces viability
 - Leave yeast for 15 min before mixing/aerating

Use yeast after 20-30 min from start of rehydration

 do not use yeast after this time unless grape sugar or juice has been added, because reactivated yeast rapidly loses activity in water

Hydration temperature is very important

The Australian Wine Research Institute

Correct

Incorrect

The Australian Wine Research Institute

Culture amelioration before inoculation of difficult to ferment juices/musts

Step-wise cooling by adding juice to the culture can be beneficial for cold juices or musts (post cold maceration) and/or of high Be/Brix

Yeast-related risk factors

- <u>Add rehydrated yeast to pre-warmed juice (ie</u> after cold settling or cold soak, preferably >15°C
- For cold (<15 ° C), highly clarified, high sugar juice ferments, step-wise cool reactivated yeast in 5-10 ° C steps at 5 min intervals by adding appropriate volumes of the juice to be inoculated
- Ensure sufficient time has elapsed after SO_2 addition to must to avoid damaging yeast (<10 ppm SO_2 @ pH3.5) – consider adding a 'sacrificial culture' of about 15–20% of aerated active yeast (containing aldehyde) to the juice in order to bind SO_2 and other potentially inhibiting substances, about 30 min before inoculation
- Do not use old yeast stocks for high risk juices

Fermentation management

- ▼ Add yeast hulls for high risk ferments (detoxification role)
- ✔ Allow ~10% of sugar to ferment before cooling
 - It is critical to build-up cell number (growing yeast v. stress sensitive)
 - Do not cool in greater than 2-4 ° C increments
- ▼ Monitor fermentation progress & temperature daily

- Spreadsheets provide an efficient record of fermentation data, comparison with similar ferments and early identification of problems

- ▼ Look for a steady fermentation rate; compare with previous data of similar ferments and/or previous years data to identify problems
- ✓ Cell numbers should reach 70 x 10⁶ cells per ml for cellar bright juice ferments (determine with microscope and haemocytometer)
 - Monitor budding % as an indication of yeast growth or problems
 - Expect high % budding during first third stage of fermentation

- Vital staining (eg methylene blue) is also a useful diagnostic for dead yeast cell estimation – check when fermentation rate becomes slow

- Also look for presence of (lactic acid) bacteria, which can adversely affect yeast activity and lead to fermentation arrest

Yeast-related fermentation factors

Factors affecting yeast implantation

- Pure culture inoculation strategy
 - Maximising the benefits of selected yeast strains

▼ Minimise indigenous yeast population of must (<10⁵ cfu/ml)

- Minimise must exposure to moderate-hot temperature, during harvest, transport, juice preparation (enzyme treatment, clarification, etc) which otherwise promotes indigenous yeast & bacteria growth

- Add sufficient SO₂ (50-100 ppm, depending on fruit condition) during machine harvest to limit indigenous microbial growth

- Clarification procedures can lower indigenous microbial growth
- High indigenous yeast count can indicate nutrient depletion add nutrs.

▼ Optimise yeast starter culture population

- Yeast propagator should exceed 10⁸ cfu/ml, but be capable of producing maximum population of 3-4 x 10⁸/ml

- ADWY viable cell population should exceed 2x10¹⁰ cfu/g

Recommended Inoculation rates

- whites: 5 x 10⁶ cells/ml(typically 250 g ADWY per kL juice);
- reds: 4 x 10⁶ cells/ml ; lower rates can compromise yeast implantation

Factors affecting yeast implantation

Control of indigenous yeasts and nutrient loss

- Grape condition
 - Damaged grapes (rain/bird damage/mouldy/heat wave) have higher wild microbial load, including wild yeast, acetic and lactic acid bacteria
- Method of harvest and transport
 - Mechanical harvest gives higher microbial load due to poor harvester/transport bins hygiene eg adjust sulfite: time, temperature
- Must processing
 - Time (minimise) / Temperature (as low as practical)
 - Chemical antimicrobials (effective levels of sulfite (measure pH)
 - Physical removal of microbes (ie enzyme / cold settling, filtration, centrifugation)
 - Hygiene (clean/sanitise harvester and transport bins regularly)
 - Minimise must dO₂ & contact with O₂ (stimulates oxidative microbes)
- Fermentation conditions
 - Temperature (18-27 ° C favours S. cerevisiae (Sc) over non-Sacch. sp)
 - pH (<3.5 favours S. cerevisiae)
 - SO₂ (favours S. cerevisiae, generally tolerant to 10 ppm free)
 - O₂ at 30-40% Ferm Progress prolongs survival of Sc yeast

✓ Yeast Assimilable Nitrogen (YAN)

- A variable proportion of Australian juices/musts have inadequate YAN
- Measure YAN on a grape maturity sample or juice sample
- Sow YAN of <150 mg N/L for whites or < ~ 100 mg N/L for reds increases risk of slow/stuck fermentation
- S Maximum growth achieved at approx. 400 mg N/L (NB high heat productn)

Lipid deficiency (phytosterols and unsaturated fatty acids (UFA))

- Sover clarification removes lipids necessary for yeast growth
- § i.e. when <0.1-0.5 v/v juice solids (ie 'cellar bright') or <5 NTU
- Section of "fine" settled grape solids highly stimulatory to yeast growth
- § Avoid "hard" settled grape solids, which can impart phenolic coarseness, hotness, bitterness to wine
- Sehydrate yeast with inactivated yeast product rich in sterols

▼ Dissolved Oxygen (dO₂)

- § dO₂ is highly variable in juice/must ranging 0 8 ppm (air-saturated)
- Service A state of the stage of the stage
- Serate to give ~5 ppm oxygen (sparge, pump over, rack-return, etc)
- Soxygen alleviates yeast REDOX imbalance & stimulates sterol formation

v Vitamins

- S Vitamin status of Australian musts/juices is unknown
- § Thiamine essential for ethanol production by yeast
 - losses caused by high SO₂ use and wild yeast growth
- § Vitamins (thiamine, niacin, biotin, pantothenate, pyridoxine, inositol) can be added to starter cultures under ANZFA Wine Regulations
- Some proprietary yeast foods provide a useful source of vitamins

▼ Minerals

- S Mineral status of Australian musts/juices is unknown
- § Phosphate normally considered adequate; can be added with DAP
- **§Low K+/Low pH** can lead to stuck ferms with some yeast strains (sparkling/tirage)
- § Magnesium, zinc, manganese, which are enzyme co-factors are thought to be suboptimal (these cannot be added under ANZFA Wine Regulations)
- § Some proprietary yeast foods provide a limited source of minerals

▼ Low YAN juices/musts

S Low YAN musts are typically also low in other nutrients

§ Useful to add proprietary inactivated yeast nutrients to yeast starter cultures when deficiencies are suspected

Vineyard & Year effect on juice YAN

Yeast growth response to YAN

Fermentation response to YAN

Synthetic juice ≡ 'cellar bright' juice

All other nutrients are adequate, representing Nitrogen-limited growth

Low Nitrogen (<200 mg N/L) Low biomass increases risk of slow/stuck fermentation and H_2S production

Inverse relationship between Initial YAN and H₂S production

• Initial YAN should exceed 250 mg N/L YAN to prevent H₂S but H₂S profile depends on yeast strain X juice/must interactn

• Not all Yeast H₂S responds to DAP; could be a vitamin deficiency?

YAN Requirements of Yeast

(white juice, low solids fermentation conditions)

The Australian Wine Research Institute

1. Maximum N demand:

Mean = 400 mg N/L Range = 330 - 470 mg N/L

2. Minimum YAN requirement

Whites – approx. 150 mg/L

Reds – approx. 100 mg/L

3. Minimum YAN to prevent H₂S

approx. 250 – 350 mg/L (yeast x must dependent)

4. Optimum flavour formation

Whites (strong style effects – complex thr' to fruity)

- Chardonnay fruity: 250–350 mg/L; <200: complex</p>
- Sauvignon Blanc ? mg/L
- Reds fruity: 250–350 mg/L ; <200: complex</p>

N-demand of fermentation yeast examples from Lallemand range

The Australian Wine Research Institute

N demand	Yeast	Туре
Low	71B/Actiflore	R/(W) Estery
(1-1.5 mg N/g CO2)	DV10	W/R/S Neutral
	QA-23	W/S EVC
	D47	WEVC
	M1107 / Uvaferm CN	IR EVC
	Lalvin EC1118	W/S Neutral
Medium	V1116	W Neutral
	D254	R/W EVC
	L2056	W/R Estery
	Uvaferm CEG/Epern	ay 2 W/S (barrel)
	R2	W Estery
(1.5-2 mg N/g CO2)	RC212	REVC
	S6U	WEVC
	BDX	R EVC
	CSM	REVC
	CY-3079	W (barrel) EVC
	L2226	R Neutral
	L2323	REVC
High	BM 45	R (barrel) EVC
-	K1M	
(>2 mg N/g CO2)	VL1 / VL3	WEVC
	Sb 1176 / 1375	R/W EVC
R, red; W, white; S	, sparkling; EVC, e	nhances varietal character

Defined as Nitrogen needed to maintain constant fermentation rate in synthetic medium with initial YAN = 100 mg/L; sugar = 200 g/L Adapted from Lallemand Product Catalogue (2000) & Julien, Roustan, Dulau & Sablayrolles (2000) AJEV Yeast growth response to O₂ added at start of fermentation

Fermentation response to O₂

Effect of O₂ on fermentation rate

Rate Anaerobic (Max rate of CO ₂ production)	Yeast	%Rate gain with O ₂ added at 1/3 fermentation progress	Yeast
Low	S6U	Low	CSM
<0.5	CEG	(16%)	K1M
	EC1118		V1116
	DV10		CY3079
	QA23		R2
Medium	K1M		71B/Actiflore
0.6-0.7	VL3		S6U
	L2323		VL1
	L2226	Medium	D47
	VL1	(30%)	DV10
	71B		QA23
	R2		
High	D47	High	EC1118
>0.7	CSM V1116 CY3079	(45%)	IOC182007

Adapted from Lallemand Product Catalogue (2000) & Julien, Roustan, Dulau & Sablayrolles (2000) AJEV 51:215-222

Combined effect of DAP + O_2 on fermentation Nutrient strategy for stimulating fermentation

Practical strategies for ensuring a complete fermentation with low vigour yeasts eg S. bayanus AWRI 1375

All treatments tested promoted refermentation

N.B. Rescue cultures were prepared by AWRI step-wise acclimatisation procedure

The Australian Wine Research Institute Juice Clarification affects Fermentation Rate and Wine Residual Sugar

Ferment rate	Wine residual	Clarification treatment
	sugar tu	rbidity
Highest	Lowest	Cold settled
\wedge		Bentonite treated and settled
		Enzyme treated and settled
		Centrifugation, 10 min at 1500g
		Coarse filtration
		Centrifugation, 20 min at 10000g
Lowest	Highest	Fine filtration (eg Sietz EK)

High clarity increases fermentation risk but enhances varietal character Therefore, turbidity is adjusted to balance yeast performance and flavour

Inhibitory substances – risk factors

- ▼ Ethanol probably largest cause of stuck ferments
 - strain dependent: growth at 8-12%, fermentation >12 %
 - determined by grape maturity at harvest
- **v** SO₂
 - strain dependent, typ. >10 mg/L free SO₂ at pH 3.5
 - cell death at 45 mg SO₂/L, pH 3.5 (0.8 mg/L mol. SO₂)
- ▼ Fatty acids (good hygiene / aerate ferments)
 - acetic acid: yeast growth at >1.5 g/L at 8% EtOH fermentation inhibited at 3-4 g/L
 - aliphatics (C6, C8, C10): ca. >3 mg/L at 10% EtOH
- ▼ Toxins (low risk except for lactic acid bacteria infection)
 - yeast toxins most active in low solids (bright) ferments
 - some wine yeast are tolerant
 - some Lactobacillus toxins can inhibit ferm. (high/low solids)
- ✔ Agrochemical residues (very uncommon)
 - copper oxychloride 10-15 mg/L
 - captan, fenarimol (eg Rubigan) / triadimenol (Bayfidan)
- ▼ Residues of winery sanitisers (uncommon)
- Yeast hulls can be used as a broad spectrum detoxification additive
 From Henschke (1997) ASVO Seminar Procs pp. 30-38,41

Role of acetic acid in stuck fermentation

The Australian Wine Research Institute

inoculated yeast

Ø(excessive) nicotinic acid can stimulate production

• wild yeast

Origin of acetic acid

Øapiculate yeasts (Kloeckera/Hanseniaspora)

• lactic acid bacteria – most important

Ø principally from citric acid

• acetic acid bacteria

Ørequires significant O2

Effect of acetic acid on refermentation Fermentation rate

Stuck ferments containing different conc. acetic acid were inoculated with rescue yeast previously acclimatised to the stuck wine

Eglinton & Henschke (1999) Aust. J. Grape Wine Res. 5:71-78

Agitation aids refermentation

>>> When restarting fermentation, important to keep yeast in suspension by physical means until CO_2 production commences, which then maintains yeast in suspension

The Australian Wine Research Institute

- Yeast starter cultures are more effective rescue cultures when prepared by step-wise acclimatisation to the stuck ferment wine.
- Acclimatised rescue cultures can effectively restart incomplete ferments which contain up to 2 g/L acetic acid.
- Yeast strains however vary in their ability to act as a rescue culture
- Use of an acclimatised rescue culture largely negates the need to remove acetic acid by RO before rescue unless a very high concentration of acetic acid is present.
- Since additional acetic acid can be formed during the rescue procedure it is best to remove the acetic acid following refermentation of the wine.

▼ Temperature stress

Do not commence cooling until 10% sugar fermented Excessive temperature (32-35 °C depend on [EtOH]) Over-cooling for particular yeast (non-cryogenic) / may need to use methods to maintain yeast in suspension if <13-15 °C Excess heating or cooling (transition exceeding 5 °C) Cooling preferably should be <3 °C per day

✓ Vigour and sedimentation (flocculation)

Yeast sediments in low vigour ferments (CO_2 bubbles keep yeast in suspension and assists ferment circulation) Physical stirring can help prevent sedimentation Avoid flocculating strains in cool, cellar bright, anaerobic, high sugar ferments

✔ Grape solids

Beneficial to wine style but deprives yeast of key nutrients Lipids increase yeast tolerance to ethanol stress

▼ Nutrients

If known or suspected lack of nutrients (especially YAN and O2) recommend aeration (ca. 5 ppm O_2) and adding 300 mg/l DAP at 30-50% fermentation progress

Problem fermentations

The Australian Wine Research Institute

Take corrective action early

- ✓ Add 500 mg/L EC1118, PDM, Uvaferm 43, etc
- ✓ Rehydrate with sterol-rich reactivation nutrient
- ✓ don't let culture run dry go onto next stage when 50% of sugar has gone
- Avoid temperature shock
- ✓ Add wine to culture, rather than culture to wine
- \checkmark Add SO₂ if bacteria present in stuck wine
- ✓ Rack or centrifuge stuck wine (remove dead yeast)
- Add DAP and aerate once active
- Yeast hulls often beneficial
- Keep yeast in suspension
- ✓ Keep good records

If ferment stops with <10 g/L residual sugar and the alcohol content is <12 % v/v:

- Then recommend preparing a starter culture in grape juice with a recommended yeast. This procedure is relatively quick and will produce moderate tolerance to alcohol
- Otherwise use a rescue culture prepared by stepwise acclimatisation of a recommended rescue yeast. This procedure builds tolerance to the toxic substances present in the problem ferment

Yeast acclimatisation procedure for restarting difficult and stuck ferments (See AWRI Website for details)

Procedure for 1000 L of ferment

Stage	Function		Cumulative volume
1	Preparation of	rescue culture	20 L
2	Acclimatisatio		
	Step	Proportion of ferment	
	1	50%	40 L
	2	75%	80 L
	3	88%	160 L
	4	94%	320 L
3	Inoculate prob	olem ferment	1020 L

Adapted from Henschke (1997) ASVO Seminar Procs pp. 30-38,41

- Stepwise acclimatisation of yeast to toxic substances of the problem ferment – if possible, incrementally add the ferment to the culture rather than the culture to the ferment
- No sugar depletion stress
- No nitrogen depletion stress
- Continuous aeration
- Agitation prevents nutrient starvation stress

For more information

- AWRI website wealth of practical information
- ASVO seminar 1996 papers by: Henschke, Monk & Four industry practitioners
- Industry Services Group ; AWRI Technical Note 05
- Contact Industry Development & Support team: Con Simos, Adrian
 Coulter, Geoff Cowey, Matthew Holdstock for technical advice

Acknowledgments

Peter Leske (former AWRI team leader)/Peter Godden (IA Team)

Wine Microbiology team:

Simon Schmidt, Paul Chambers (former members: Jeff Eglinton, Holger Gockowiak, Nancy Davis and Lisa Buckingham)

Research at The AWRI is supported by Australia's grapegrowers and winemakers through their investment agency the Grape and Wine Research and Development Corporation, with matching funds from the Australian Government.

Rotten egg, cabbage and rubber: compounds responsible for reductive off-flavours in wines

Leigh Francis

Compounds found in wine

The Australian Wine Research Institute

Low MW Sulfur Compound		Odour Descriptor	Aroma Threshold (µg/L)	Detected (µg/L)	
				Literature Review	AWRI
Hydrogen Sulfide	H2S	rotten egg, sewage like	1	nd - 370	nd - 56
Methanethiol	MeSH	rotten cabbage, burnt rubber, putrefacation	1.5	nd - 16	nd - 11
Ethanethiol	EtSH	onion, rubbery, burnt match, sulfidy, earthy	1.5	nd - 50	nd - 3
Dimethyl sulfide	DMS	<i>blackcurrant</i> , cooked cabbage, asparagus, canned corn, molasses	25	nd - 474	nd - 980
Carbon disulfide	CS2	<i>sweet, ethereal, slight green,</i> rubber, sulfidy, chokingly repulsive	5	nd - 18	nd - 140
Diethyl sulfide	DES	garlic, rubbery	1	nd - 10	nd
Methyl thioacetate	MeSAc	sulfurous, cheesy, egg	40	nd - 115	nd - 53
Dimethyl disulfide	DMDS	vegetal, cabbage, intense onion- like (at high levels)	10	nd - 22	nd - 2
Ethyl thioacetate	EtSAc	sulfurous, garlic, onion	70	nd -180	nd - 32
Diethyl disulfide	DEDS	bad smelling, onion	4	nd - 85	nd - 1.5

Hydrogen sulfide detection threshold

H₂S and methanethiol act additively, benzenemethanethiol not so stinky

Reductive flavour most commonly relates to H₂S and methane thiol

Formation and degradation of H2S

Copper additions can be very effective at removing sulfur compounds

$$H_2S = H_2S + Cu^{2+} \otimes CuS^{-1}$$

DMDS $CH_3S-SCH_3 + Cu^{2+}$ ® unreactive

DMS $CH_3SCH_3 + Cu^{2+}$ ® unreactive

Downsides of residual copper

The Australian Wine Research Institute

- **v** Hazes
- ▼ Increased loss of 3-MH and 3-MHA
- ▼ More rapid loss of SO₂
- Increases in sulfides

Hazes and protein instability

The Australian Wine Research Institute

Turbidity (heated)

- Increased copper levels in bottled wine are well known to increase protein instability
- Generally recommended to keep levels below 0.5 ppm, but limit depends on the wine

3-MH (3-Mercaptohexan-1-ol) 3-MHA (3-Mercaptohexan-1-ol acetate)

Dr. Mandy Herbst-Johnstone School of Chemical Sciences The University of Auckland

 SO_2 cannot interact with O_2 directly

It requires the presence of metals such as copper and iron.

Sulfur Dioxide (free)

24

23 23

22

After just two months in bottle!

Danilewicz, J. (2007). Interaction of sulfur dioxide, polyphenols, and oxygen in a winemodel system: Central role of iron and copper. *American journal of enology and*

Increases in sulfides

AWRI

COMMERCIAL SERVICES

After just two months this Chardonnay was already showing the impact of increased copper

MeSH

- **v** Best time to add is at the end of fermentation
 - S Eliminate the potential precursors as early as possible
 - S Use the solids to remove as much of the excess copper as possible
- If you have to do it later
 - S Know what sulfur compounds you are treating (copper/cadmium test)
 - § Add the minimum amount of copper
 - § Give it time to stabilize before bottling
 - § Test the copper levels before and after addition

Never add on the day of bottling

Γhe Australian Wine Research Institute

- Smart technologies
- Viticulture
- Wine and health
- Winemaking and Extension Services
- Winemaking calculators
- Search the passwordprotected areas of the website

MEMBER ACCESS

Logged in as geoffc LOG OUT

The principle of this test is that different reductive volatiles react with different fining agents, including copper and cadmium salts (Note that cadmium sulfate is not an allowable fining agent and is only to be used in this diagnostic test). A fining trial can be conducted using these agents to determination of the type of reductive fault present in a wine to determine the appropriate course of action to remove the fault.

Reagents

1) 1% w/v Copper (II) Sulfate solution (1 g of CuSO4.5H2O in 10% Ethanol) 2) 1% w/v Cadmium (II) Sulfate solution (1 g of CdSO4.8 H2O in 10% Ethanol)

Caution:

Cadmium is TOXIC

Do not taste samples to which cadmium has been added. Assess by aroma only. Cadmium sulfate is not an allowable wine additive or processing aid and is only to be used in this diagnostic test

10% w/v Ascorbic acid (10 g ascorbic acid in 100 ml of 10% Ethanol)

Procedure

- 1. Place 50 mL of wine into four separate glasses.
- 2. Label the four glasses: (1) control, (2) copper, (3) cadmium, and (4) ascorbic acid +copper
- Add 1 mL of reagent 1, the copper sulfate solution to glass 2 ('copper' glass),
- 4. Add 1 mL of reagent 2, the cadmium sulfate solution to glass 3 ('cadmium' glass),
- Add 0.5 mL of reagent 3, the ascorbic acid solution to glass 4 ('ascorbic + Cu' glass), wait 2 minutes, then add 1 mL of reagent 1, the copper sulfate solution to the same glass 4.

- Copper can be very effective in preventing the development of sulfur off-flavours
- ▼ However if excess is left in the wine it can lead to
 - the development of the same undesirable characters
 - § hazes
 - **§** degradation of SO₂ levels and desirable sulfur compounds
- Copper is best added early in the wine's life when fermentation solids can help to remove it. Later additions can lead to a build up of available copper
- ▼ Not all copper is stripped from wine post addition as sulfides
- ▼ Careful trials can lead to successful management of copper levels

Blackcurrant or canned corn??

Dimethylsulfide (DMS) $H_3C_5CH_3_{25 \mu g/L}$

Acknowledgements

The Australian Wine Research Institute

- **v** Eric Wilkes
- Paul Smith
- Marlize Viviers
- Mark Smith
- Martin Day
- Christine Mayr
- Tracey Siebert
- Mandy Herbst-Johnstone (Uni of Auckland)
- Treasury Wine Estates
- ▼ The rest of the AWRI team

The Australian Wine Research Institute, a member of the Wine Innovation Cluster in Adelaide, is supported by Australia's grapegrowers and winemakers through their investment body, the Grape and Wine Research Development Corporation, with matching funds from the Australian government.

Automating Juice and Wine Analysis

Dr Eric Wilkes Group Manager Commercial Services

We have all seen CSI/NCIS

The Australian Wine Research Institute

Cost v speed Accuracy v convenience Cost v accuracy Speed v Maintenance

Only one thing for sure, no perfect one size fits all solution.

How quickly do I really need that result?

How much is it worth to me?

If I replace the people am I losing other skills?

Would lean/organization solve the problem?

Is a better LIMS going to make a difference?

GET LEAN GET LEAN

It's a journey—of continuous improvement with perfection unattainable.

Digital refractometers

-

Brix / Baume \$1.5K~\$20K

- Quick
- Accurate
- Easy to use
- bubble cause issues
- Temperature corrected, sort of
- ***** expensive

Density meters

Brix, SG, alcohol \$3K~\$20K

- Quick
- ✓ Accurate
- Easy to use
- Need careful cleaning
- **Sensitive to degassing**
- ✗ Don't bounce

Alcohol \$25K

Quick
Accurate
Easy to calibrate

Need careful cleaning
Sensitive to degassing
Can get unexplained outliers

Ebulliometers

Autotitrators

pH/TA, SO₂ \$3K~\$50K

✓ Quickish ✓ no less accurate ✓ can be left unattended ✓ Can have autodegassing ★Need careful maintenance and cleaning **X** difficult to troubleshoot

Flow Injection Analysis

SO₂, VA ~\$40K

- Huge throughput
- Need careful cleaning
 High Maintenance
 some dodgy reagents

Enzymatic Analysis

G/F, malic, YAN, VA, SO₂ \$1K~\$30K

✓Quickish

accurate and reliable

- less interferants
- Need good tech skills
- expensive and
 perishable
 consumables

Automated enzymatic analysis

The Australian Wine Research Institute

G/F, malic, YAN, VA, SO₂ \$20K~\$100K

✔Quickish

- High throughput
- ✓ accurate and reliable
- less interferants
- Need good tech skills
- **X** Maintenance

* expensive and perishable consumables

Using MLF to accentuate wine aroma and flavour

Eveline Bartowsky Senior Research Microbiologist

Malolactic fermentation

▼ MLF ...

- **§** Reduce wine acidity
- § Microbial stability
- Sensory changes

- When can it occur?
 - Spontaneous
 - Inoculated

- Sensory impact
 - § Buttery character
 - fruity & vegetative characters
 - § Improved mouthfeel

- Delayed/failed MLF
 - S Can increase the risk of wine spoilage, especially Brett & biogenic amines

MLF is generally more difficult to manage that AF

▼ Talk will concentrate on sensory aspect of MLF

Buttery aroma - Diacetyl

- V O. oeni during MLF
- Derived from citric acid metabolism
- Aroma
 - S buttery, nutty, butterscotch
 - § 1 4 mg/L = enhance flavour complexity
 - \$ > 5 7 mg/L = undesirable buttery aroma

0.2 mg/L

0.9 mg/L

Cabernet Sauvignon 2.8 mg/L

The Australian Wine Research Institute

from Bartowsky & Henschke, 2004

Many factors influence Diacetyl

The Australian Wine Research Institute

Winemaking parameters & diacetyl

The Australian Wine Research Institute

AF + MLF inoculation regime

Time point of bacterial inoculation can influence the wine composition and sensory attributes of red and white wines

§ Summation of berry fruit esters

The Australian Wine Research Institute

Cabernet Sauvignon 2006 Bordertown

AF/MLF - fruity characters in red wine

Fig. 5. Sensory descriptors of Malbec wines from must B₀₅ fermented with S. cerevisiae strain (INTA MZA) and Oenococcus oeni strain (Uvaferm Alpha) in simultaneous (SIM) and sequential (SEQ) inoculations

Malbec (2005) pH 3.6, TA 7.2 g/L Mendoza 273.5 g/L reducing sugar

2.67 g/L L-malic acid 126 mg/L YAN

Massera et al 2009 Fd Technol Biotechnol

AF/MLF – white wine

Riesling (2010) Rheingau

pH 3.1, TA 15 g/L 218.1 g/L reducing sugar 6.5 g/L L-malic acid

The Australian Wine Research Institute

Knoll et al. 2012 Wrld J Microbiol Biotechnol

Bacterial metabolism

▼ Factors affecting bacterial metabolism during MLF

Influence of pH

- Influence of wine pH during MLF
- Effect of MLF & ML strains on the development of berry & fruity sensory attributes

Fruity characters in red wine

- pH influences bacterial metabolism
- Increased total red fruit esters correlates with increased berry & fruity Sensory attributes

Fruity characters in red wine

from Costello et al. 2012

Consistency with ML strains & vineyard over vintages
Differences between vineyards

Wine pH affects O. oeni metabolism

Cabernet Sauvignon, Limestone Coast 2006

Costello et al. 2012 AJGWR

pH affects O. oeni metabolism

The Australian Wine Research Institute

Knoll et al 2011 Fd Sci & Technol

Yeast and bacteria

The Australian Wine Research Institute

Mendoza et al 2011 J Ind Microbiol Biotechnol

		К	S	K+S	K+S+O	K+S+O
Residual sugar	g/L	20.84	0.72	081	086	075
Ethanol	% v/v	8.82	13.91	13.56	12.97	13.38
VA	g/L	0.79	0.45	0.58	1.23	0.61
рН		3.81	3.83	3.81	3.92	4.05
ТА	g/L	5.27	5.91	6.22	6.79	4.90
Malic acid	g/L	1.89	1.76	1.81	0.04	0.02
Glycerol	g/L	7.98	8.55	8.43	8.27	8.16
Acetaldehyde	mg/L	37.83	56.54	52.35	17.76	48.14
Colour intensity		1.60	1.62	1.59	1.52	1.70
Colour hue		1.24	1.19	1.22	1.20	1.15

Palate and MLF

Recent studies

Some strains of O. oeni have the genes for exopolysaccharide production

Can O. oeni produce exopolysaccharides?

Sensory & [exopolysaccharide]

Cabernet Sauvignon Vineyard A Costello, 2006

Sensory & [exopolysaccharide]

Cabernet Sauvignon Vineyard A Costello, 2006 ➡ :

O. oeni strains can produce exopolysaccharides
Correlates with viscosity of wine

The Australian Wine Research Institute

Acknowledgments

- **v** AWRI Wine Biosciences
 - MLF Team
 - Second Caroline Abrahamse
 - § Peter Costello
 - § Jane McCarthy

- V Wineries: kind donation of grapes & wine for research
- ▼ Lallemand: support for berry-fruit research

 This project is supported by Australia's Grapegrowers and winemakers through their investment agency the Grape and Wine Research and Development Corporation, with matching funds from the Australian Government

Information and online tools available on the AWRI website

www.awri.com.au

The Australian Wine **Research Institute**

Supporting Australian grape and wine producers

Home

Con

About Us Research & Development Industry Support and Education

Commercial Services

Information Services

Our People & Employm

Grape and wine composition

Grape and wine production

Smart technologies

Wine microorganism culture collection

AWRI-Microbial Metabolomics

Research and Development Science and technology working

for grape and wine producers

New resources navigation

The Australian Wine Research Institute

Resources for vineyards Information on agrochemicals and related analytical services, advice and support, fact sheets and more.

Resources for wineries Includes permitted additives, winemaking calculators, laboratory setup and method, Frequently Asked Questions, and products and suppliers.

Resources for wine exporters Information for exporters such as factsheets and publications, analytical services and more.

Resources for consumers

Factsheets and publications, library resources, links to other websites, research projects and wine and health

Sign up for new website account

The Australian Wine Research Institute

Resources for vineyards Information on agrochemicals and related analytical services, advice and support, fact sheets and more.

Member Login	
User Name	
forgotten your passvord sign	up
Subscribe to eNews	
and eBulletins	
Search The AWRI Website	
Search keywords	0

Username	Enter account details
E-mail	s
First Name	library sites, าd
Last Name	✔AWRI will verify account requests.
Company Name	✔ All approved requests will be activated.
Category choose a category	▲ A confirmation email including password will be sent to the requester.
Levy payer (Australian winery or grapegrower) Industry body (GWRDC, AWBC, WFA, State/Regional industry body, etc.) Australian research organisation or university Student (Australian resident) Student (overseas) Journalist Consultant (winemaking, Australian resident) Consultant (viticulture, Australian resident)	✓ Some sections can only be accessed via username / password.

Regulatory Assistance

The Australian Wine Research Institute

4.1 g/L

12.1 g/L

45.1 0/1

12.1 g/l

17.1 9/1

32.1 1/1

50.1 g/L

16.9/L

17 g/L

12.0 g/L

45.0 g/L

12.0 g/L

17.0 g/L

32.0 g/L

50.0 g/L

About Us Research & Developmen	Industry Support and Education	Commercial Services Informa	tion Services	Our People & Employe	ment						
Courses, seminars & workshops		4 -10 -	20			Viev	w requirem	ents by cou	intry		
- Environment			-			disp					
 Online videos 	The second second	Contraction of the local division of the loc		一人	-	Vie	w requirem	ents by cer	tificate		
Regulatory assistance	AWRI Educatio	on & Industry Supp	oort C	<u>-</u>		ple	ase choose	-	•		
Analytical requirements for the export of Australian wine	Industry Support and Educa	tion > Regulatory assistance				disp					
Additives & processing aids	Regulatory assis	stance					-	ents by ana	llytical parame	eter	_
Wine standards	Analytical requirements fo Wine standards	r the export of Australian wine	é			ple disp	ase choose			•	
• Viticulture	Additives & processing ald	2					~~)				
+ Wine and health	the Managing Director, the §	ry and technical advice to the A lealth and Regulatory Informat	tion Manager	and membe					quirements for the export o		19
 Winemaking advice and problem solving 	information requests annual	support team. The AWRI handle ly, on technical, scientific and r ublic. The AWRI also prepares	regulatory iss	ues from go	122.000	al require	ements for t	he export o	f Australian wir	ne	
• Winemaking resources?	submissions in relation to vi	ticulture and oenological practi	ices.	a the second	Guide t	o Export Requi	rements Minimum	Maximum	Continuing Approval	Certificate of	Other
WIC Winemaking Services	South Australian Wine Ind	2011년 1월 1일 1일 1일 1월 1월 1일 1일 1일 19 19 19 19 19 19 19 19 19 19 19 19 19		gulatory mat Reg Ch	alon Ina	Standards Y	Specification Y	Specification Y	Application Y	Origin Y	Requirements Certificate of Free Sale
Member Login		on of Australia Wine Industry T on of Australia Wine Industry N			ards						
Welcome, Linda Bevin		yal Agricultural and Horticultur le de la Vigne et du Vin (OIV)	ral Society of !		TICA					SPECIF	ICATION MAXIMUM
log out	Law Base of Law 199	n Fornachon Memorial Library)	maintains the	Contraction of the International Contractional Contractionactional Contractional Co		ingth at 20°C				7.0 % v/v	-
Subscribe to eNews	related literature in the sout	hern hemisphere. It also house ape legislation (updated week)	es an extensiv	e print colle Total		(glucose) [°]					
				Dry w	ines*					-	4.0 g/L

Semi-dry"

Semi-sweet

Sweet Sparkling

ticut*

Extra-dry* Dry

Semi-dry

Dry extract

Sweet

White Rosé

Searchable databases on permitted additives and processing aids, and export analytical requirements

Winemaking calculators

The Australian Wine Research Institute

standard drinks

- Acid addition
- Ascorbic acid addition
- <u>Bentonite addition</u>
- <u>Carbon addition</u>
- <u>Copper sulfate addition</u>
- Crème of Tartar addition
- Deacidification
- · Diammonium phosphate additions
- Ferro Cyanide trial
- Fining trial
- Fortification
- Gelatine addition
- General conversion calculators
- Grape juice concentrate (GJC) addition using Pearson Square
- <u>Hydrogen peroxide addition</u>
- Interconversion of acidity units
 - Acetic acid
 - <u>Citric acid</u>
 - Lactic acid
 - Malic acid
 - Sulfuric acid
 - Tartaric acid
 - Tartaric acid (meg/L)
- Isinglass addition
- Laboratory stock solution
- Methanol expressed as proportion of ethanol calculator
- <u>Micro-ox addition</u>
- Molecular sulfur dioxide addition
- Number of standard drinks
- <u>Paired preference</u>
- PMS addition
- <u>PVPP addition</u>
- Same/Different
- Sensory difference test
 - <u>Duo-trio</u>
 - Paired comparison
 - Triangle
- Sorbic acid addition
- Sulfur dioxide addition
- <u>Tannin addition</u>
- Winery stock solution

<u>Industry Support and Education</u> > <u>Winemaking resources</u> > <u>Winemaking calculators</u> > Number of standard drinks

Number of standard drinks

Suggestions / questions / comments? email the calculator services staff

Approximate standard drinks

(750	mL
(14.5	% v/v

8.6

Calculate number of standard drinks

Clear

Container volume

Alcohol content

Information Services

About Us

Research & Development Industry Support and Education Commercial Services Information Services

Marketing and packaging

Environment (however formerly Wine and Health)

Sensory (formerly Environmental Health)

Our People & Employment

- eBulletins Annual reports AWRI publications eNews **AWRI Information Services** Current topics Online image collection V eBulletins eNews Grape and wine search Information Services > Technical Review > Current Edition Factsheets portal Current Edition Grape & wine search portal **Factsheets** Articles Library services to levy pavers The rotten facts about laccase Early inoculation for MLF can reduce overall vinification time: laboratory and winery trials in Shiraz Online image collection Current literature Technical Review [Click on triangle to view contents] **Current Edition** AWRI Publications Oenology Current literature search and General Juice and wine handling order 1. Relative efficacy of high-pressure hot water and high-power ultrasonics for wine Previous issues oak barrel sanitization 2. Characterisation of wine yeasts: Fermentation temperature in rosé wines: how far can you lower the temperature? Affect on flavour profile Member Login 3. Grape juice: how to extract the full potential of the grape Welcome, Linda Bevin 4. Australian producers make the most of the poor cousin of the red Bordeaux varieties log out 5. Sulfur dioxide content of wines: role of winemaking and carbonyl compounds 6. Transport and ripeness linked to top tropical flavours in Sauvignon Blanc Subscribe to eNews Microbiology Analysis and composition and eBulletins
 - **AWRI** publications Technical Review

Click on article name to view more information and to order a copy of the article

Search The AWRI Website

Library Services

Search The AWRI Website

infoservices@awri.com.au or call us on 08 8313 6600

- ✓ Free library service to Australian grape and wine producers
- Over 65,000 books, V journal articles, conference proceedings etc
- Online library database
- Fast response time (1 to 3 days)

Mobile website

Winemaking calculator app

http://www.awri.com.au/industry_support/winemaking_resources/winemaking-calculators-app/

The Australian Wine Research Institute

Annual webinar program since 2011

Participate in a live seminar from your desk using a computer with Internet access

Weekly session consisting of 20 min presentation and 20min Q&A

The 2013 Program features 23 webinars

http://www.awri.com.au/industry_support/c ourses-seminars-workshops/webinars/

Presentation	Description	Presenter	Date	Register
Optimising your laboratory for the best results	Laboratories are a critical, and often expensive, part of modern wine production. This webinar will highlight a number of areas that are important to not only ensure results are accurate, but to achieve them in an efficient and cost effective manner. Some of the topics that will be discussed include basic lab quality systems; LIMS; lab design; lean systems and troubleshooting common laboratory issues.	Eric Wilkes (The AWRI)	23/07/2013	Register
Strategies for reducing alcohol levels in wine	The AWRI has taken a holistic approach to the development of strategies for the reduction of alcohol concentration in wine. Several viticultural and fermentation practices show considerable promise for the production of good quality reduced- alcohol wines. This session will present our latest findings and point to the need to evaluate a combinatorial approach to reducing alcohol concentration in wine.	Cristian Varela (The AWRI)	30/07/2013	Register
The latest on CMCs	Carboxymethylcellulose is becoming an important part of the winemaker's tool box for white wine tartrate stabilisation. However, like all wine additives, there is more to the successful use of CMCs than sales brochures might suggest. This webinar will look at how CMC works; when it is appropriate to use; what precautions you need to take and the best ways to test the wine when using it.	Eric Wilkes (The AWRI)	6/08/2013	Register
Till death do us part: Cell death in the grape berry as a quality measure	ТВА	Steve Tyerman (The University of Adelaide)	20/08/2013	Register
Climate influence and trends for the wine industry	ТВА	Darren Ray (Bureau of Meteorology)	27/08/2013	Register

2013 webinar program

australian grape & wine events calendar

event search	events calendar locations events members log-in contact us
Date	Event
14 May 2013	AWRI Hunter Valley Seminar Mercure Resort Hunter Valley, Pokolbin NSW
14 May 2013	New Technologies in Grapegrowing and Winemaking Treasury Wine Estates vineyards, Padthaway SA
15 May 2013	AWRI Barossa Adapting to difficult vintages workshop Vine Inn, Nuriootpa SA
21 May 2013	AWRI Clare Adapting to difficult vintages workshop The Artisan Table, Clare SA
21 May 2013	AWRI Langhorne Creek and Adelaide Hills Seminar Langhorne Creek Football Clubrooms, Langhorne Creek SA
22 May 2013	Regional Smoke Taint Update Gum San Chinese Heritage Centre, Ararat VIC
23 May 2013	GWRDC #INseries workshop - China Insights: McLaren Vale
23 May 2013	Regional Smoke Taint Update Yarra Glen Memorial Hall, Yarra Glen VIC
24 May 2013	<u>GWRDC #INseries workshop - China Insights: Barossa</u>
24 May 2013	Regional Smoke Taint Update Oxley Shire Hall, Oxley VIC
27 May 2013	GWRDC #INseries workshop - China Insights: Hunter Valley
28 May 2013	GWRDC #INseries workshop - China Insights: Yarra Valley
30 May 2013	GWRDC #INseries workshop - China Insights: Margaret River
20 May 2012	Margaret River Wine in Sydney The Parnet Long Poom, Customs House, Circular Ouay NSW

Download today's presentations via the AWRI website

Your feedback is important to us . . .

Please assist by completing the evaluation forms inside your seminar packs and hand them back to any AWRI staff member.

Thank you for your participation today!