AWRI

The Australian Wine Research Institute

Copper, the good, the bad,

the ugly

Dr Eric Wilkes
Commercial Services

Why do we use copper at all?

- ❖ To get rid of the bad smells of course.
- Copper has a long history of use in beverage production to remove unpleasant sulfur related smells.

What are these smells?

Low MW Sulfur Compound			Aroma	Detected (ug/L)	
		Odour Descriptor	Threshold (ug/L)	Literature Review	AWRI
Hydrogen Sulfide	H2S	rotten egg, sewage like	1	nd - 370	nd - 56
Methanethiol	MeSH	rotten cabbage, burnt rubber, putrefacation	1.5	nd - 16	nd - 11
Ethanethiol	EtSH	onion, rubbery, burnt match, sulfidy, earthy	1.5	nd - 50	nd - 3
Dimethyl sulfide	DMS	blackcurrant, cooked cabbage, asparagus, canned corn, molasses	25	nd - 474	nd - 980
Carbon disulfide	CS2	sweet, ethereal, slight green, rubber, sulfidy, chokingly repulsive	5	nd - 18	nd - 140
Diethyl sulfide	DES	garlic, rubbery	1	nd - 10	nd
Methyl thioacetate	MeSAc	sulfurous, cheesy, egg	40	nd - 115	nd - 53
Dimethyl disulfide	DMDS	vegetal, cabbage, intense onion- like (at high levels)	10	nd - 22	nd - 2
Ethyl thioacetate	EtSAc	sulfurous, garlic, onion	70	nd -180	nd - 32
Diethyl disulfide	DEDS	bad smelling, onion	4	nd - 85	nd - 1.5

It can be very effective.

$$H_2S$$
 $H_2S + Cu^{2+} \rightarrow CuS \downarrow$

DMDS
$$CH_3S-SCH_3 + Cu^{2+} \rightarrow unreactive$$

DMS
$$CH_3SCH_3 + Cu^{2+} \rightarrow unreactive$$

But why doesn't it always work?

- Why does my wine go stinky again after it is treated in tank?
- Why don't the bench trials always reflect what I see in tank?

It is all a question of equilibrium!

Its not quite as simple as you may think!

$$3H_2S + CH_3 - C$$
OH
$$2 CH_3 - CH$$
SH
$$1-hydroxy-ethanethiol$$

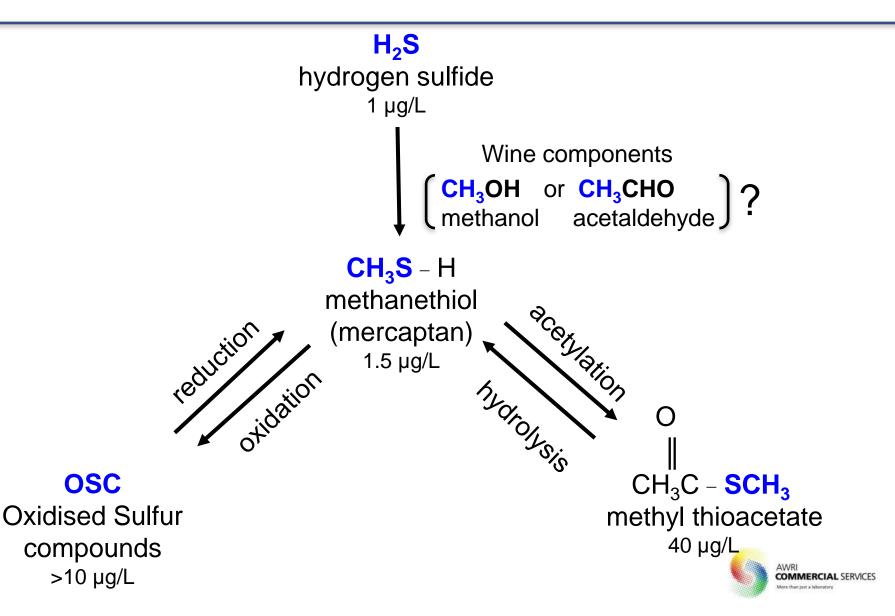
Solution Hard solutions to the solution of the

intense ruppery or suipnury odour

cis/trans-4,7-dimethyl-1,2,3,5,6pentathiepane meat like aroma

-H₂S cis/trans-3,6-dimethyl-1,2,4,5-tetrathiane rubbery chemical $\frac{1}{2}$

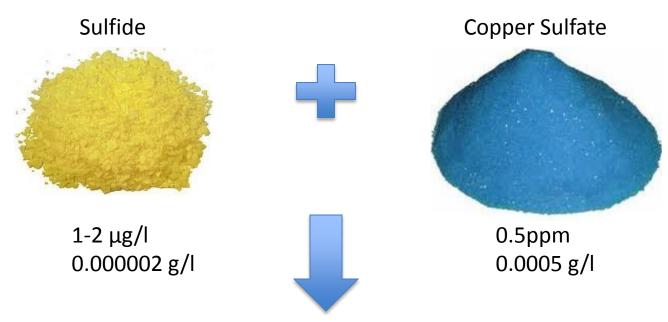
$$CH_3 - C - CH_3 - CH_$$


bis(1-mercaptoethyl)sulfide

cis/trans-2,5-dimethyl-1,2,4-trithioland spicy meat, meat like or allium arom

If only it was that simple!

OSC



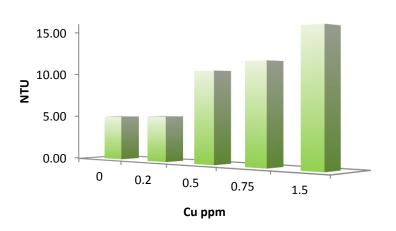
Myth busting!

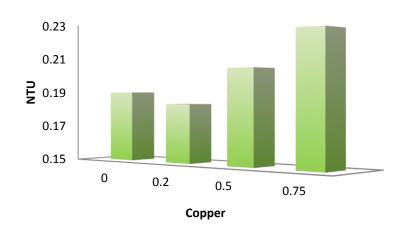
All the copper I add drops out as insoluble sulfide!

It is not unusual to see copper values increase at exactly the same rate as addition.

Downsides of residual copper

- Hazes
- Increased loss of 3-MH and 3-MHA
- ❖ More rapid loss of SO₂
- Increases in sulfides



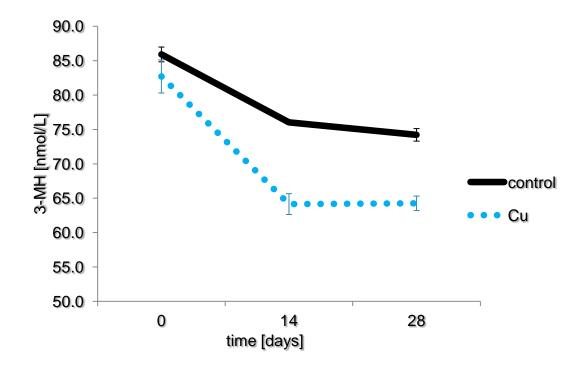

Hazes and protein instability.

Turbidity (heated)

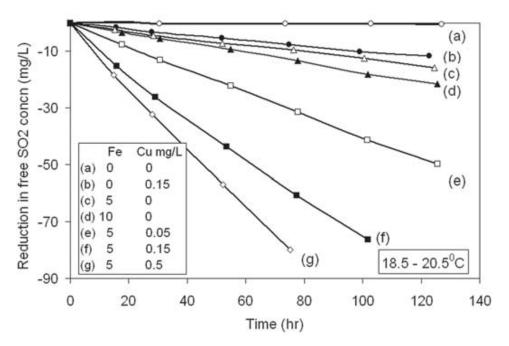
Turbidity (heated) fined

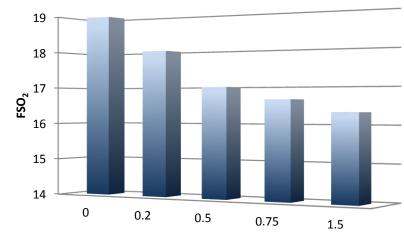
Increased copper levels in bottled wine are well know to increase of protein instability.

Generally recommended to keep levels below 0.5 ppm, but limit depends on the wine.


Increased loss of 3-MH and 3-MHA

3-MH (3-Mercaptohexan-1-ol) 3-MHA (3-Mercaptohexan-1-ol acetate)


Dr. Mandy Herbst-Johnstone School of Chemical Sciences The University of Auckland

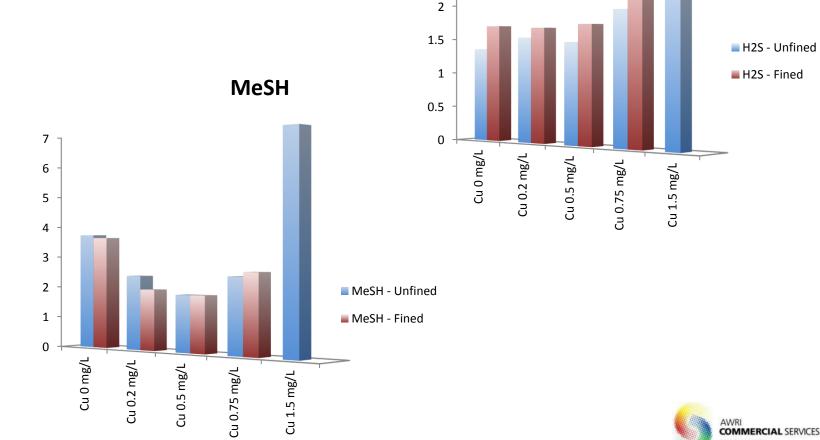

More rapid loss of SO₂

 SO_2 cannot interact with O_2 directly. It requires the presence of metals such as copper and iron.

Sulfur Dioxide (free)

After just six months in bottle!

Danilewicz, J. (2007). Interaction of sulfur dioxide, polyphenols, and oxygen in a wine-model system: Central role of iron and copper. *American journal of enology and ...*.

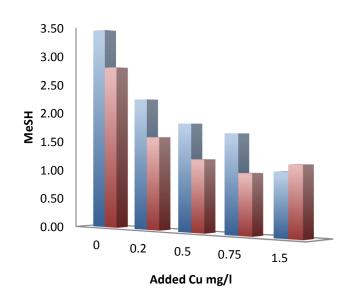


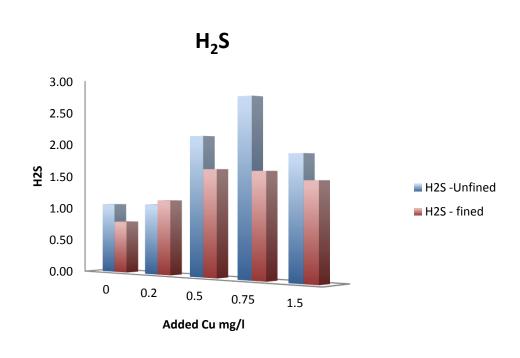
Increases in sulfides

 H_2S

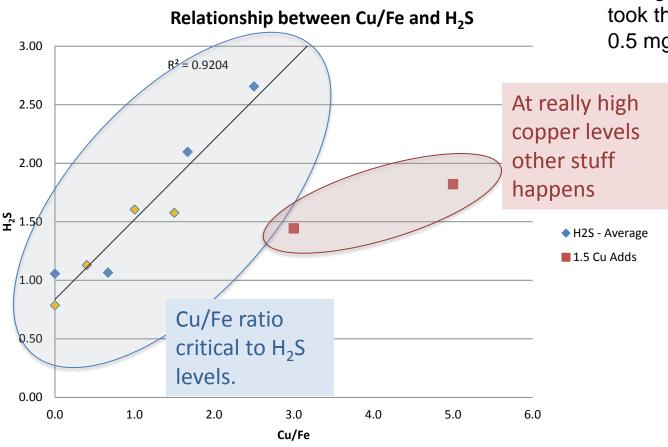
After just 2 months this chardonnay was already showing the impact of increased copper.

3


2.5

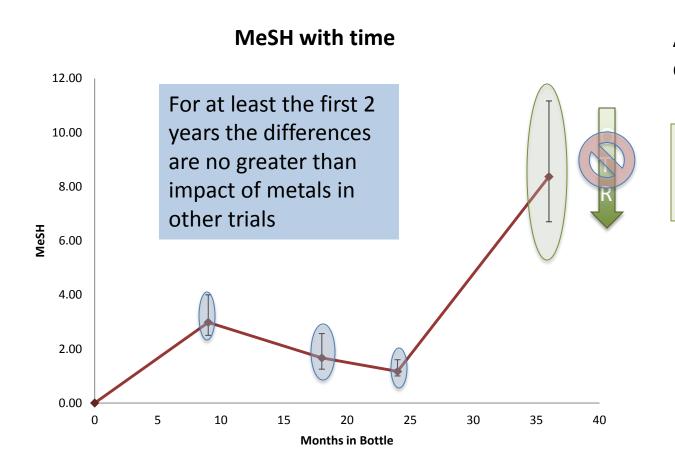

After 6 months.

While the MeSH has gone down, we don't know where!
The H₂S seems to be maxing at typical copper levels.


MeSH - unfined

■ MeSH -fined

fined / unfined?



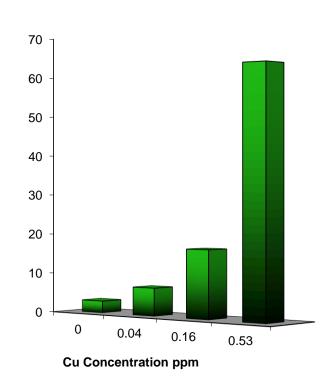
Fining with Bentonite took the wine from 0.2 to 0.5 mg/L of Iron.

Isn't this just driven by the closure?

Average results for 9 different closures.

Final level does not correlate with closure OTR!

Pattern typical of what we see as the available O_2 / SO_2 environment changes.


How bad could it get?????

Clare Valley Riesling after 8 months.

Ralative Amounts of Cu v's H₂S

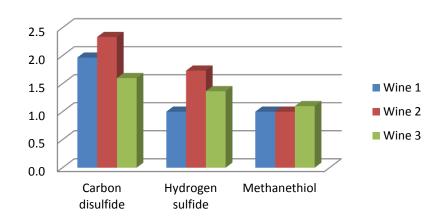
H₂S Concentration ppb

Remember, the threshold for is about 1 for most people!

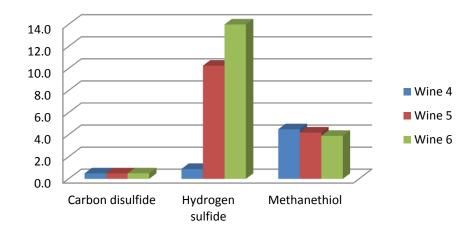
Why the differences between wines?

- No such thing as free copper in wine.
- It is all interacting in some way with the different species in wine.
- Some of these prevent copper getting involved in the oxidation/ reduction chemistry.
- Others don't!
- Incredibly important to tailor copper additions to the wine in question.

Never just make a standard addition!



The wines in front of you.



		Carbon disulfide	Dimethyl sulfide	Hydrogen sulfide	Methanethiol	Methyl thioacetate
Wine 1	Red Control	2.0	73.7	<1	<1	6.4
Wine 2	Red 0.5mg/L Cu	2.3	87.0	1.7	<1	7.4
Wine 3	Red 0.75 mg/L Cu	1.6	65.7	1.4	1.1	6.7
Wine 4	White Control	<0.5	21.0	0.9	4.5	<5
Wine 5	White 0.5mg/L Cu	<0.5	21.7	10	4.2	<5
Wine 6	White 0.75 mg/L Cu	<0.5	21.0	14	3.9	<5

Red Wines

White Wines

When is it ok to use copper?

- Best time to add is at the end of fermentation
 - Eliminate the potential precursors as early as possible
 - Use the solids to remove as much of the excess copper as possible
- If you have to do it later
 - Know what sulfur compounds you are treating (copper/cadmium test)
 - Add the minimum amount of copper.
 - Give it time to stabilize before bottling.
 - Test the copper levels before and after addition.

Never add on the day of bottling.

Summary

- Copper can be incredibly effective in preventing the development of off sulfur characters.
- However if excess is left in the wine it can lead to
 - the development of the same undesirable characters
 - hazes
 - degradation of SO₂ levels and desirable sulfur compounds
- Copper is best added early in the wines life when fermentation solids can help to remove it.
- Later additions can lead to a build up of available copper.
- Not all copper is striped from wine post addition as sulfides.
- Careful trials can lead to successful management of copper levels.

Acknowledgements

- Paul Smith
- Marlize Viviers
- Mark Smith
- Martin Day
- Mandy Herbst-Johnstone (Uni of Auckland)
- Treasury Wine Estates
- The rest of the AWRI team.

Thankyou

Questions?

