AWR1

Cold stability, testing for a moving target.

Dr Eric Wilkes Group Manager Commercial Services

Cold Stability, what is it?

- Cold stability is essentially a wines ability to resist the precipitation of tartrates.
- Components in wine (crystallization inhibitors) help prevent the tartrate from precipitating.
- As the wine matures or undergoes winemaking processes the levels of these crystallization compounds can change, allowing tartrate to precipitate.
- This can happen even after traditional cold stabilization.

Potential vs current

This means there are essentially two types of tartrate stability!

Current Stability

A measure to show if the wine will precipitate tartrates here and now if chilled.

Potential Instability

A measure of the wine's potential to become unstable as the wine loses crystallization inhibitors (ages/changes), even if it does not precipitate crystals when chilled.

Testing methods

There are nearly as many cold stability testing methods as there are wine varieties;

and just as much debate about which is best.

- We will touch on the four most commonly used;
 - Freeze/thaw
 - Cold incubation / brine
 - Mini contact / conductivity
 - Saturation temp

Freeze / thaw

- Quick cheap and dirty.
- ★ Can pretty well get whatever result you need depending on the freezing time.

Results impacted by:

- Sample size
- Sample shape
- Location in the freezer
- Particulates
- The phase of the moon (really)

Brine or 3 day test

- Considered the reference method by many Australian wineries.
- Gives a good indication of current stability.
- But it does not give an indication of the wines future (potential) stability.
- **X** Can be hard to interpret for reds.
- ➤ Best procedure is to bring it back to 20°C for a few hours to allow any colour compounds to go back in solution.
- ➤ Check the solids left for crystals.

Mini-contact or conductivity methods

Conductivity is a measure of ions in wine, mainly attributed to K⁺.

Essentially all these methods try to measure the change in conductivity after seeding a cold sample of the wine.

- Principle: Crystallisation causes a decrease in conductivity over time.
- A big change in conductivity reflects a large tartrate precipitation and hence a high degree of instability.
- More advanced methods determine rate of change of conductivity to give a more accurate determination.
- Constant agitation and monitoring of conductivity.

Mini-contact or conductivity methods

- Gives a reasonable indication of the wines potential stability.
- ✓ Very quick compared to the 4 day test.
- ★ However the seeding can swamp the natural crystallization inhibitors giving false positives and resulting in over stabilization.
- Quite expensive to set up to do well.
- Can be difficult to interpret for some wines with either very high or very low conductivities.
- Often difficult to correlate with traditional results for reds.

Saturation temperature (Tsat)

- Tsat is defined as minimum temperature required to induce crystal formation; the lower the better.
- The method is based on increase in conductivity at room temperature; determined by calculating the temperature at which the wine will (theoretically) throw a deposit.

- ✓ Indication of potential stability
- Crystallisation inhibitors not accounted for

In summary?????

	Tests Current Stability?	Tests Potential Stability?	Setup costs \$\$\$\$
Freeze /Thaw	*	*	\$
3 day brine	✓	* (?)	\$\$
Conductivity	* (?)	✓	\$\$\$
Tsat	*	✓	\$

No perfect method (at least yet).

What is the best option???

The best option!

A combination approach!

A combination of Brine (current stability) and Sat Temp (potential stability).

Brine **≭** Sat Temp **≭**

→ brutally unstable, probably chill and seed.

Brine ✓ Sat Temp ¥

→ Currently stable but could throw a deposit with time. Think about a crystallization inhibitor.

Brine ✓ Sat Temp ✓

→ Stable for the duration. No need to do anything else.

Questions?

AWRI COMMERCIAL SERVICES
SO MUCH MORE THAN A GREAT LAB