

AWI

Thursday, 3rd October, 2013

Morning Tea

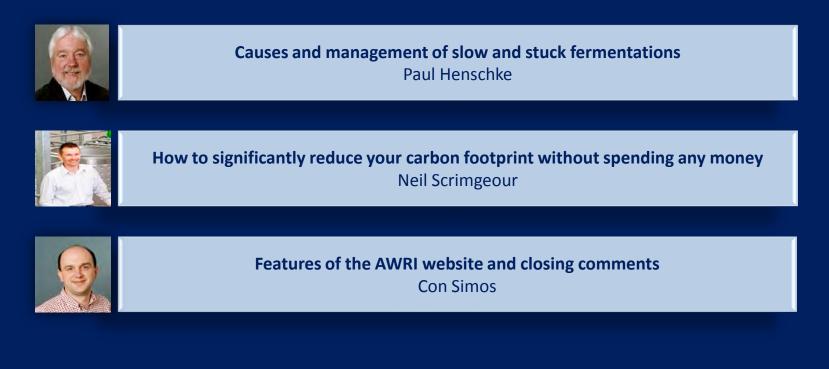
AWR

Thursday, 3rd October, 2013

Lunch

AWR

Thursday, 3rd October, 2013



Afternoon Tea

AWF

Thursday, 3rd October, 2013

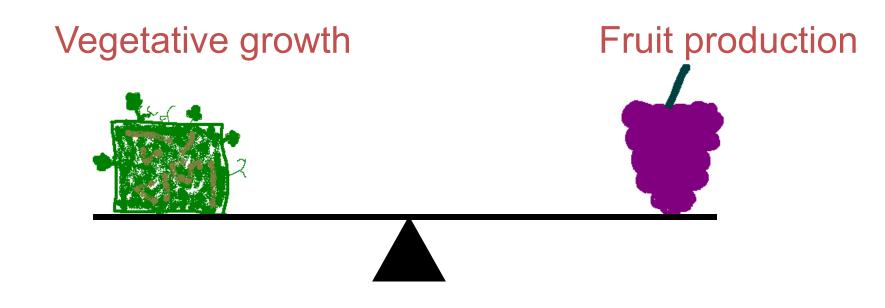
Vine balance – how does it affect yield and wine quality?

Mardi Longbottom

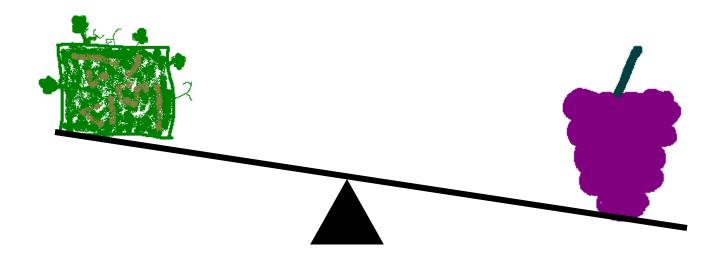
Vine balance & wine quality

The Australian Wine Research Institute

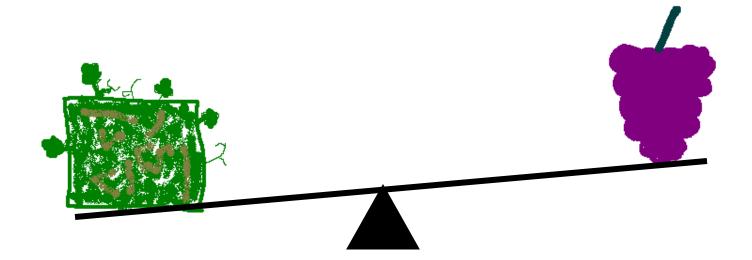
- What is vine balance?
- How do we measure vine balance?
- What is the best way to achieve vine balance?


Yield/ha? Berry size? Shoot vigour? Canopy density? Bunch exposure?

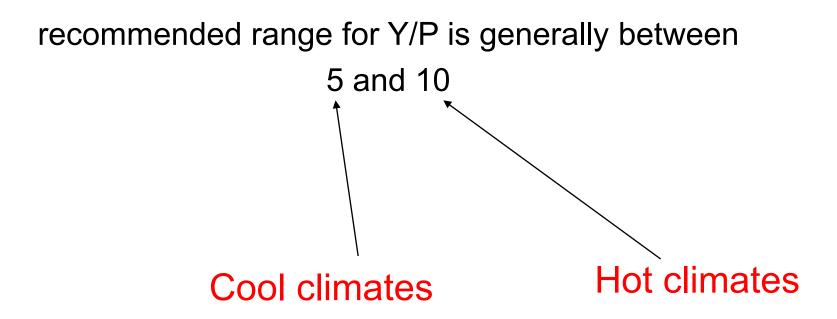
for a given variety x location



'Balance is achieved when vegetative vigour and fruit load are in equilibrium and consistent with high fruit quality' Gladstones (1992) Viticulture and Environment



'overcropping'



excessive vigour; undercropping

1. Fruit yield to pruning weight (Y/P, Ravaz Index)

Yield to pruning weight contd

The Australian Wine Research Institute

Y/P = 6

Y/P = 2

Does FW/PW correlate with wine quality?

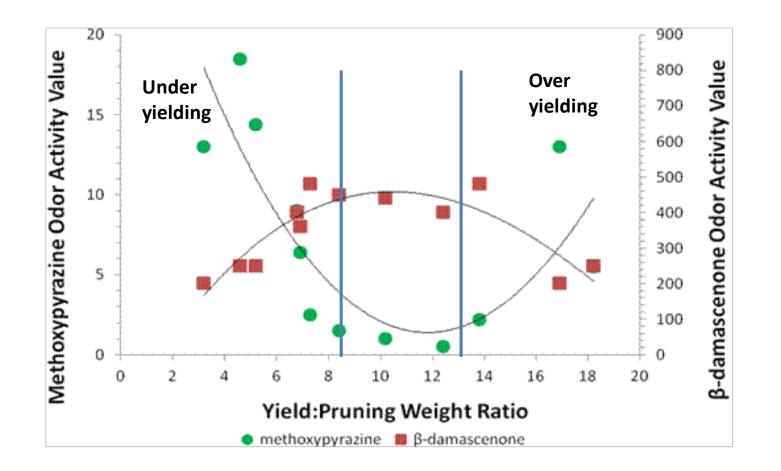
The Australian Wine Research Institute

- Cab Sauv, single vineyard, Calif (Dokoozlian et al. 2011)
- Bunch thinning 3 weeks after fruitset

Treatment	Yield t/ha	FW/PW	Days to reach 24° Brix (relative to BA)
'Undercropped' UC	4	3	-12
'Balanced' BA	15	8	0
'Overcropped' OC	30	14	+11

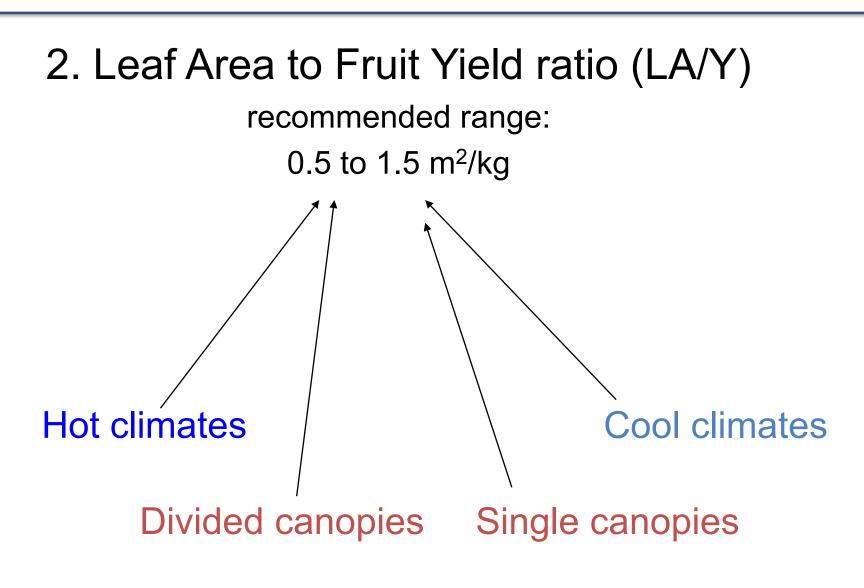
Does FW/PW correlate with wine quality?

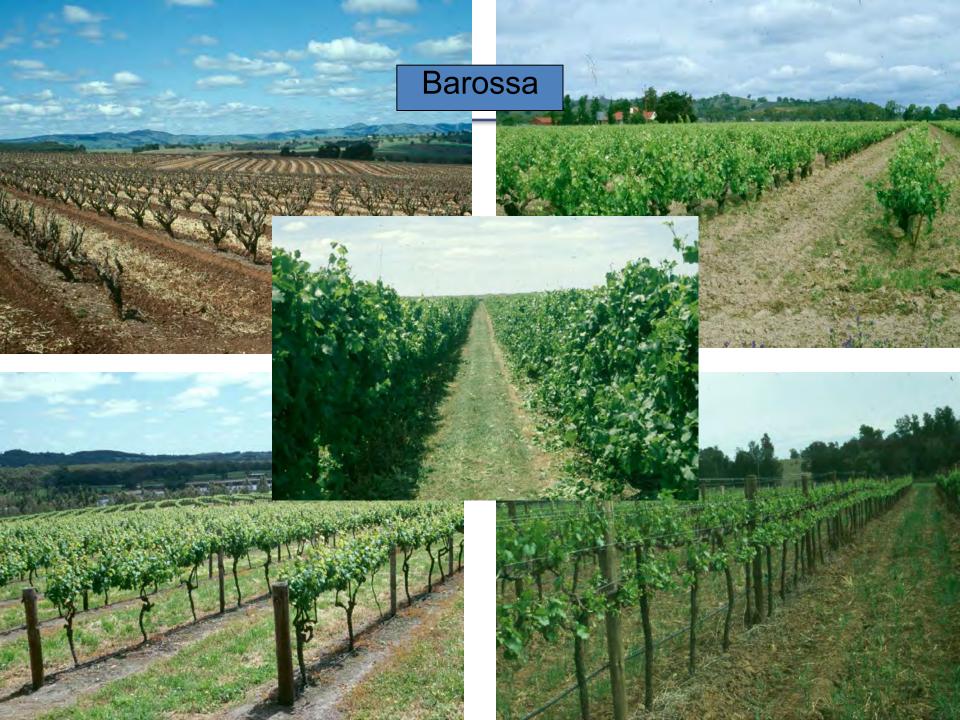
The Australian Wine Research Institute


- Cab Sauv, single vineyard, Calif (Dokoozlian et al. 2011)
- Bunch thinning 3 weeks after fruitset

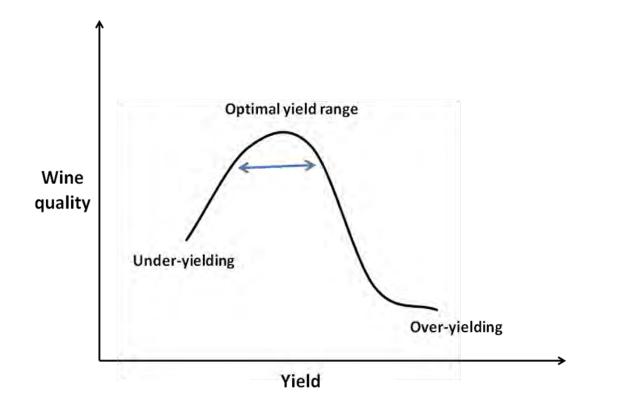
Treatment	Yield t/ha	FW/PW	Days to reach 24° Brix	OAV damascenone at 24° Brix
'Undercropped'	4	3	-12	200
'Balanced'	15	8	0	380
'Overcropped'	30	14	+11	160

Does Y/P correlate with wine quality?




The Australian Wine Research Institute

redrawn from Dokoozlian et al. 2011 with permission from authors



- Iow yielding vineyards MAY produce better wine than high yielding
- However, it is not necessarily the low yield per se rather it is where the vines are grown and the way that they are managed that determines the quality.

Yield

The Australian Wine Research Institute

Generalised relationship between grape yield and wine quality.

A diversion to Bordeaux

Source: van Leeuwen et al. (2004)

The Australian Wine Research Institute

Terroir study

- 3 soil types
 - 'dry' = gravelly
 - 'moist' = clay subsoil
 - 'wet' = sandy + roots in contact with high water table
- Cab Sauv, Cab Franc, Merlot

Insert Bordeaux photo

A diversion to Bordeaux

Source: van Leeuwen et al. (2004)

The Australian Wine Research Institute

What were the seasonal factors most closely associated with vintage rating?

- ✤ Sunshine?
- Temperature?
- Length of ripening period?
- yes
- Rainfall? flowering to harvest

- Best vintages when water supply to vine from flowering to harvest was most limiting
- Either soil effect or seasonal effect or both
- ✤ Water deficit prior to veraison → early cessation of shoot growth

Other indices of vine balance

The Australian Wine Research Institute

Cessation of shoot growth by veraison

Can this be quantified?

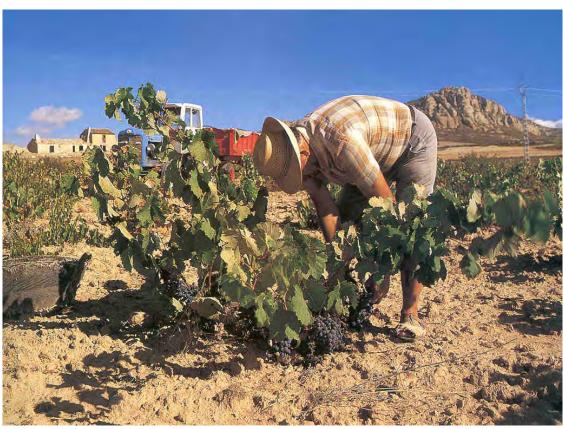
Cessation of shoot growth by veraison

- Why is this significant?
- Diversion of resources to fruit?
 - Or some other factor?
- Diversion of resources to roots?
 - → increased supply of hormones from roots to ripening fruit?

Other indices of vine balance

The Australian Wine Research Institute

Periderm development


poor shoot periderm development after leaf fall

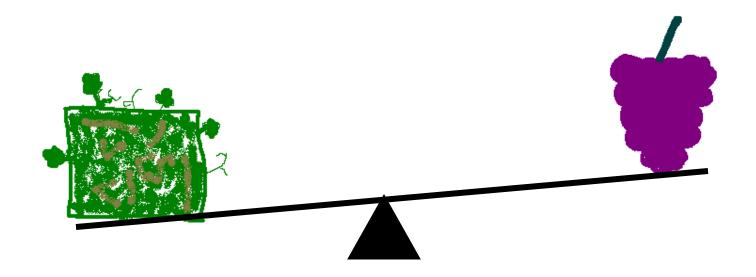
Other indices of vine balance

The Australian Wine Research Institute

Early maturity/harvest

The first vineyards to be harvested for given variety within a particular climatic zone will produce the best wine. Is this true?

Riverland Shiraz (1995)


- 40 vineyards studied within same region/macroclimate
- different vineyards harvested at the same maturity, ie. 23.0 \pm 0.5 $^{\circ}\text{Brix}$
- difference of 37 days between the first vineyard to reach this target maturity and the last
- \rightarrow the earlier the harvest, the better the wine score.

Need to achieve balance prior to veraison
Need to develop adequate LA for ripening
Avoid excessive shoot vigour

What do you do if vineyard is like this?

Control vegetative growth by inducing mild to moderate water stress

Irrigation management

Soil management

What do you do if vineyard is like this?

How to achieve vine balance

The Australian Wine Research Institute

Yield control

- Pruning level
- Bunch thinning

Does yield regulation lead to improved wine quality?

- Perhaps but it depends on:
- The starting point
- How and when it is done
- May only be effective if it improves vine balance
 - It will be ineffective if it disrupts vine balance
 - and causes sugar ripening to be too advanced relative to flavour ripening

- Early is more economical than later
- If too early may stimulate shoot vigour
- In a high rainfall climate,
 - Ieave high bud number to reduce shoot vigour
 - then bunch thin relatively late e
- In dry climate can use severe p load knowing that water stress

Leaf removal in bunch zone just before flowering (E-L 19)

- Approx 8 basal leaves
- Manual or mechanical
- No lateral shoots removed
- Yield reduced by 20 to 70% mainly due to fewer berries/bunch
- Varieties used: Semillon, Tempranillo, Graciano, Carignan, Sangiovese, Barbera, Trebbiano, Ciliegiolo
 - Mostly warm climates

Poni et al (2009), Scheiner et al. (2010)

Positive effects:

- Reduced bunch compactness
- Reduced Botrytis
- No detrimental effect on Brix
- Increased concentration anthocyanin and other phenolics
- Partial recovery of LA to give later bunch protection

Why does it work?

Take home messages

- Indices of vine balance are useful guide but use other indicators as well
- Low yield does not mean good balance
- Control of shoot growth before veraison is important
 - It is better to achieve vine balance earlier in season rather than later
- The timing and method of yield control must be appropriate for the site

- Bindon et al. (2008a) Aust J Grape and Wine Res. 14, 91-103
- Dokoozlian, N. et al. (2011) Some new perspectives on the impact of vine balance on grape and wine flavour. Proc. 17th GIESCO meeting, Asti-Alba Italy: 407-409
- Dry et al. (2005) What is vine balance? Proc.12th Aust Wine Ind Tech Conf, Melbourne, 2004; pp. 68-74
- Poni et al. (2009) Aust J Grape Wine Res 15, 185-193
- Roby and Matthews (2004) Aust J Grape Wine Res 10, 74-82
- Scheiner et al. (2010) Amer. J Enol. Vitic. 61(3), 358-64
- Van Leeuwen et al. (2004) Am J Enol Vitic 55, 207-217

mardi.longbottom@awri.com.au

How can irrigation management strategies be used to manipulate wine quality?

Marcel Essling

Prepared by Peter Dry

Contents

The Australian Wine Research Institute

Winegrape quality can be defined as: the suitability of a batch of grapes to produce a wine of the highest quality for a targeted style.

Irrigation options

When deficit irrigation is appropriate

♦ When DI won't work

✤How it works

♦ Why it works

Maintain RAW range for 'no stress'

Sustained deficit irrigation (SDI)/ deficit irrigation (DI) e.g. 70% ET_∨

Regulated deficit irrigation (RDI)

When is deficit irrigation appropriate?

The Australian Wine Research Institute

When is deficit irrigation appropriate?

The Australian Wine Research Institute

Cabernet Sauvignon, Sunraysia: after 2 seasons of deficit Irrigation. Photo taken at end of January

When won't it work?

The Australian Wine Research Institute

RDI: How do you do it?

The Australian Wine Research Institute

Effect of irrigation strategy on sensory attributes:

Cabernet Sauvignon, Napa Valley Chapman et al (2005)

Standard Irrigation (SI) = 32 L/vine/week

"Minimal" Irrigation (MI) = 'deficit 32 L/vine/week applied when midday LWP < -1.6 MPa</p>

Effect of irrigation strategy on sensory attributes:

- Deficit wine' was rated much higher than standard wine with more desirable fruity aromas and flavours
- Standard wine' had more undesirable herbaceous/vegetal aromas and flavours

Water deficit improves Wine Quality

The Australian Wine Research Institute

Water deficit: why does it work?

The Australian Wine Research Institute

Lower yield ?

*

Smaller berries ?

?

- Reduced vegetative growth ?
- More open canopy and better bunch exposure ?

If it is lower yield ...?

The Australian Wine Research Institute

What is the possible mechanism?

 Often not large yield decrease for deficit irrigation relative to "well-watered" control
 e.g. 15 to 20%

Standard = 17.6 t/ha Deficit = 15.0 t/ha (Chapman et al. 2005)

- Deficit imposed at 'right' time (e.g. pre-veraison) has much greater effect on vegetative growth than on yield.
- Some deficit irrigation studies show no yield change but still increased wine quality
 - e.g. PRD (Dry et al. 2001)

Does yield reduction by any means necessarily improve quality?

No

In fact, yield reduction may reduce quality

• e.g. by bunch thinning (Chapman et al. 2004, Reiger 2009)

Why does it work?

The Australian Wine Research Institute

Lower yield ?

•

Smaller berries ?

- Reduced vegetative growth ?
- More open canopy and better bunch exposure ?

Small berries have larger skin surface area relative to volume of juice than large berries TRUE

But do they have a larger weight of skin relative to volume of juice than large berries? NOT NECESSARILY

Small berries have larger skin surface area relative to volume of juice than large berries TRUE

But do they have a larger weight of skin relative to volume of juice than large berries? NOT NECESSARILY

Concentration of wine components

- Irrigation deficit produces berries with more skin and seed tissues relative to whole berry mass than wellirrigated controls
- INDEPENDENTLY OF ANY CHANGE IN BERRY SIZE (Roby and Matthews 2004; Roby et al. 2004)

Berry size – the evidence against:

- Wines made from different berry size classes of Shiraz found characteristics including colour are similar from small and large berries (Walker et al. 2005)
- PRD increases anthocyanin concentration without any change in berry size (Bindon et al. 2008a)
- Leaf removal in bunch zone just before flowering increases anthocyanin concentration without any change in berry size (Poni et al. 2009)

Water deficit: why does it work?

The Australian Wine Research Institute

Lower yield ?

•

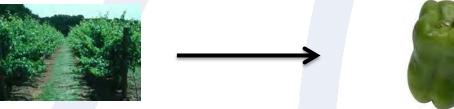
- Smaller berries ?
- Reduced vegetative growth ?
- More open canopy and better bunch exposure ?

Reduced vegetative growth?

The Australian Wine Research Institute

Bordeaux study (van Leeuwen et al. 2004)

- Best vintages where water supply to vine from flowering to harvest was most limiting
- Either soil effect or seasonal effect or both
- ♦ Water deficit prior to veraison → early cessation of shoot growth → highest vintage rating


Reduced shoot vigour by veraison...but can this be related to wine composition?

Cessation of shoot growth by veraison

 Relationship between shoot vigour and concentration of methoxypyrazines (MP) in Cabernet Sauvignon fruit

- MP strongly correlated with pre-veraison shoot vigour
 - Independent of bunch exposure

Lakso and Sacks (2010) Pract Winery and V'yard May/June 35-49, 73

Cessation of shoot growth by veraison

- Diversion of resources to fruit or roots?
- Or is something happening to roots?
 - → increased supply of hormones from roots to ripening fruit?
 e.g. ABA

Lakso and Sacks (2010) Pract Winery and V'yard May/June 35-49, 73

ABA and grape ripening

- ABA known to be involved in:
 - in initiation of ripening
 - and promotes partitioning of resources to fruit after veraison
- Ripening depends on constant supply of ABA external to bunches
- Main source = roots
 - Mild to moderate water stress is key to maintenance of ABA supply

Water deficit: why does it work?

The Australian Wine Research Institute

Lower yield ?

•

- Smaller berries ?
- Reduced vegetative growth ? perhaps
- More open canopy and better bunch exposure ?

More open canopy?

The Australian Wine Research Institute

Reduced canopy density?

- Better bunch exposure
- Less leaf shading
- Less disease

Bunch exposure:

Good evidence that bunch exposure is associated with wine quality

Several possible explanations:

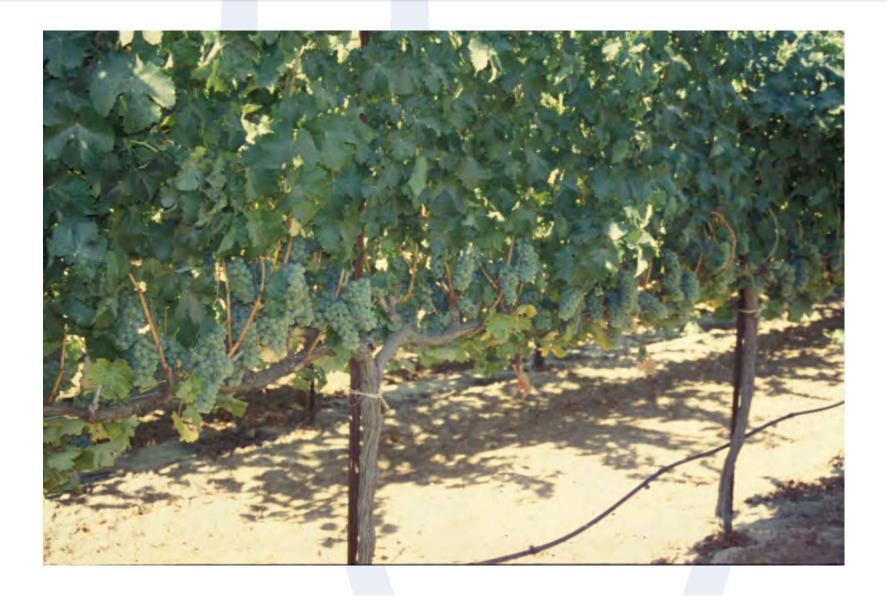
Direct effect of light and/or temperature on primary and secondary metabolites

Indirect effect

e.g. bunch exposure effect on skin thickness

Bunch exposure and skin thickness

- Pre-flowering defoliation of Barbera and Lambrusco salamino (Poni et al. 2009)
 - Increased bunch exposure
 - Increased relative skin weight
 - Increased anthocyanins
 - Increased berry size)


Bunch exposure

- Only moderate light is required for colour development
- Flavour compounds (eg isoprenoids) form more in exposed bunches – however, degradation is also greatest in exposed bunches
- Therefore, greatest aromatic intensity and varietal typicity is achieved in partial or reduced intensity sunlight plus moderate air temperatures.

Is it possible to have too much bunch exposure?

The Australian Wine Research Institute

Water deficit: why does it work?

The Australian Wine Research Institute

Lower yield ?

**

- Smaller berries ?
- Reduced vegetative growth ? perhaps
- More open canopy and better bunch exposure ? perhaps

- Or is it the effect of water deficit on plant metabolism directly?
 - e.g. biosynthesis of amino acids, carotenoids
 - Bindon et al 2008 (Barossa shiraz and cabernet sauvignon under PRD) suggested that stress-related signalling may directly affect the isoprenoid metabolic pathway.

Hypothetical effect of water deficit on aroma and flavour compounds in grape berries

Water deficit: why does it work?

- Lower yield ?
- Smaller berries ?
- Reduced vegetative growth ? perhaps
- More open canopy and better bunch exposure ? perhaps
- Direct effect on metabolism ? probably

It is likely that the "physiological effect" of the deficit irrigation that is often used to control yield is more important in determining the sensory properties of the resulting wine than any yield or berry size effects.

Therefore, a water deficit (achieved by irrigation management or otherwise) may not have to result in a significant decrease in either yield or berry size in order to affect wine quality in a positive manner

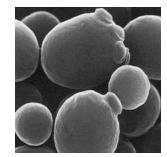
- The successful imposition of a water deficit via irrigation management will be dependent on many environmental factors, and conditions that lead to mild or moderate water stress are preferable to severe stress – which should always be avoided
- The timing of a deficit will vary from site to site
 - e.g. it may be difficult to impose a deficit before veraison in some locations

While an effect on vegetative growth —achieved by pre-veraison deficit—appears to be important, perhaps a post-veraison deficit may still have some positive effect on quality

Be prepared to change your strategy if a heat-wave is predicted

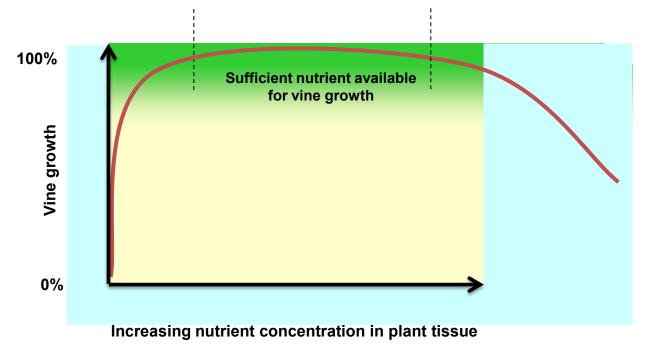
Further reading

- Bindon, K. et al. (2008a) Sth Afr. J. Enol. Vitic. 29, 71-78.
- Chapman, D. et al. (2004) Amer. J. Enol. Vitic. 55, 325-334.
- Chapman, D. et al. (2005) Aust J Grape Wine Res. 11, 339-347
- Dry, P. et al. (2001) J. Int. Sci. Vigne Vin 35(3): 1-11.
- * Kennedy, J. et al. (2002) Amer. J. Enol. Vitic. 53, 268-
- Poni, S. et al. (2009) Aust J Grape Wine Res. 15, 185-193.
- Roby, G. and Matthews, M. (2004) Aust J Grape Wine Res. 10, 74-82.
- Roby, G. et al. (2004) Aust J Grape Wine Res. 10, 100-107.
- Ryona, et al. (2008) J Agric. Food Chem 56, 10838-46
- ✤ Van Leeuwen, C. et al. (2004) Amer. J. Enol. Vitic. 55, 207-
- ✤ Walker, R. et al. (2005) Aust J Grape Wine Res. 11, 2-8



Does soil and vine nutrient status affect wine quality?

Marcel Essling Prepared by Peter Dry



Wine quality is not easily manipulated by fertiliser practices.

Many studies – no correlation between wine quality and soil content of any nutritive element with exception of N (and salt)

Red wine quality: negatively correlated with vine N

- particularly when water not limiting
- Low soil N best for red wine quality

White wine: moderate soil N best for quality

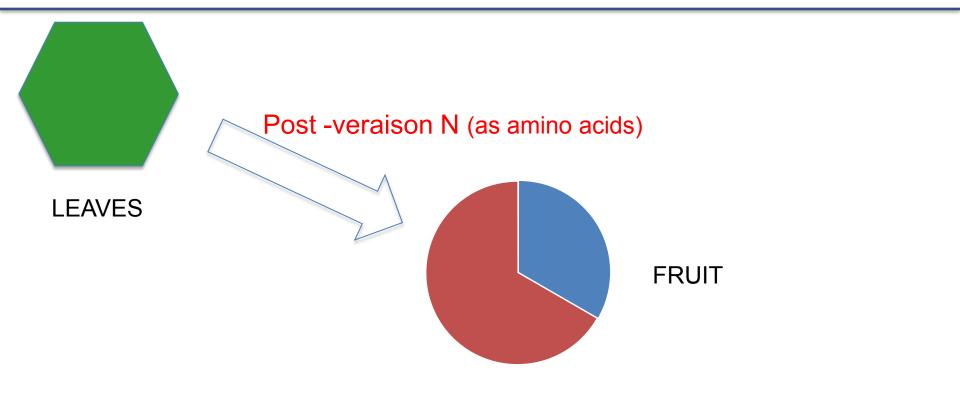
- Low N \rightarrow decreased aromatic precursors and increased tannin
- High N \rightarrow increased Botrytis

Of all mineral nutrients, N has greatest effect on growth, yield and fruit composition

- \uparrow soil N \rightarrow \uparrow photosynthesis \rightarrow \uparrow sugar
- ✤As for water, excess N can have negative effect
 - e.g. increased canopy size

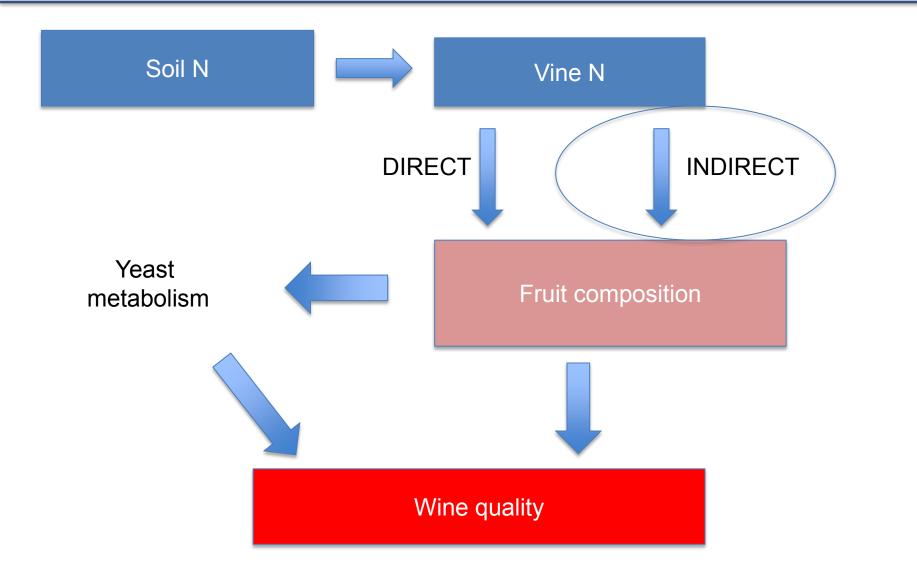
Demand for N greatest from budburst to flowering

- But most uptake from soil after flowering
- Overwintering reserves thus very important
- Storage reserves are lowest at flowering
 - Therefore plant is vulnerable to deficiency if insufficient N in soil after flowering



Total berry NITROGEN

Deficit to marginal status (based on tissue analysis)


• N fert. generally has a positive effect

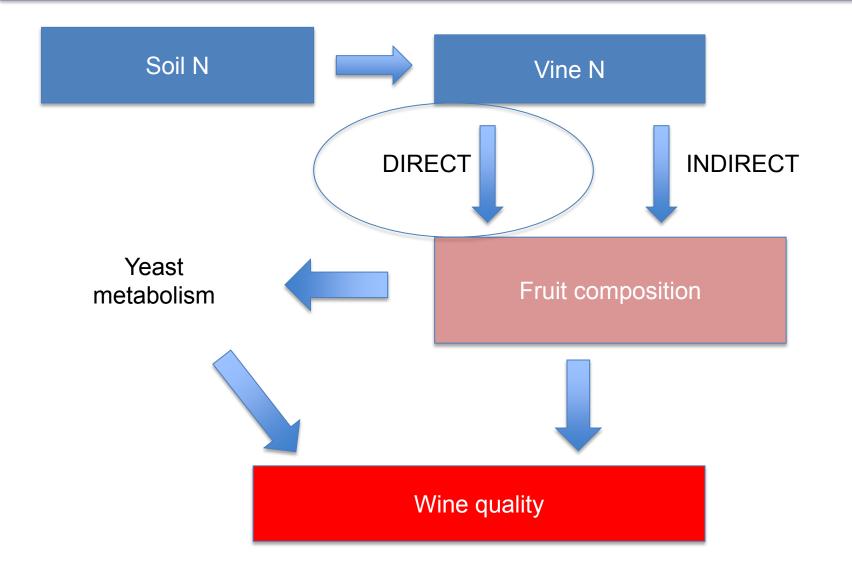
Adequate to high status (based on tissue analysis)

- N fert. may have negative effect
 - Disrupt balance
 - Increases vegetative growth
 - Increases shading
 - Decreases net photosynthesis
 - Assimilates diverted from fruit to shoots

Nitrogen effect on fruit composition and wine quality

 \therefore Excess $\rightarrow \uparrow$ vegetative growth \uparrow canopy density

- More bunch zone shading → fruit composition
 - e.g. increased methoxypyrazine concentration in Cab Sauv in response to N fertilization


 \therefore Excess $\rightarrow \uparrow$ vegetative growth \uparrow canopy density

- More bunch zone shading → fruit composition
 - generally decreased monoterpenes in response to N fertilisation.

- More disease
- Growing tips compete with fruit for assimilate

Nitrogen effect on fruit composition and wine quality

Nitrate uptake \rightarrow reprogramming of gene expression

- High nitrate suppresses genes involved in phenolic production
 - Delayed accumulation of phenolics and flavonols
- Low N at flowering stimulated sugar and phenolics
- ♦ High nitrate $\rightarrow \uparrow$ organic acid production

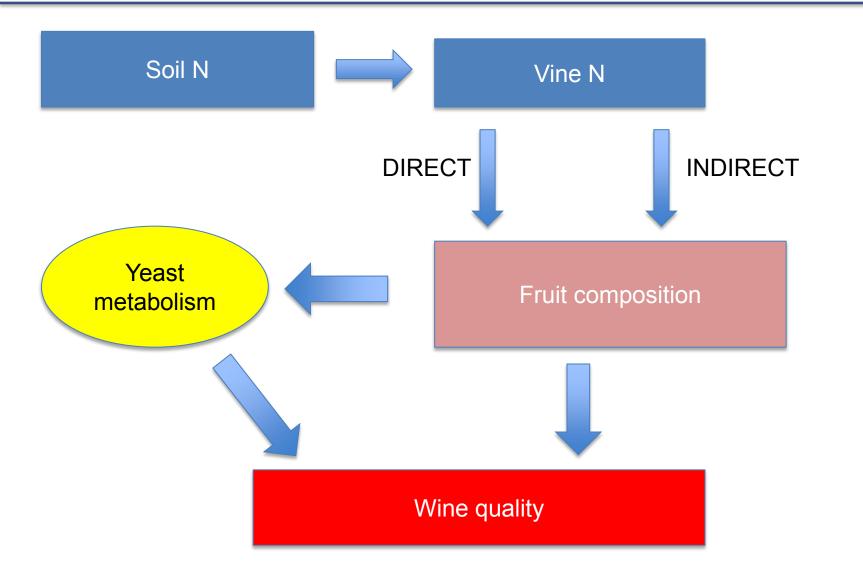
↑ amino acid

Overall effect is decreased phenolics

Impact on organic acids:

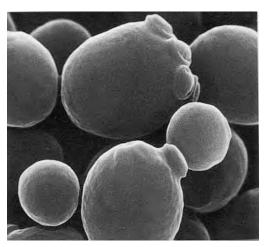
- Increased N fertilisation
 - Often no change in malic and tartaric acids
 - Some studies found higher acid, lower pH (with significant yield increase). Keller 2001
 - Increased TA Christensen 1994

Response to N fertilisation depends on starting point


- Less than adequate level:
 - may increase anthocyanins
- Adequate or more:
 - may decrease anthocyanins
- High $N \rightarrow$ lowest colour density in wine
- Low $N \rightarrow$ highest total anthocyanins and phenolics

- Can the negative effect of shading caused by high N be overcome by leaf removal in bunch zone etc?
 - Not necessarily high N and low flavonol make berries more susceptible to sunburn
- Or hedging?
 - This may waste resources because removes young leaves and retains old inefficient leaves
 - Also diversion of assimilates away from fruit

Nitrogen effect on fruit composition and wine quality



N and fermentation

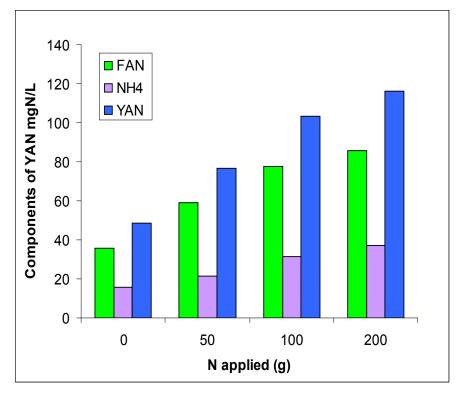
Nitrogen affects

- Yeast growth
- Metabolic activity
 - Fermentation rate
 - Flavour active compounds (fermentation bouquet)

Grape nitrogen: effect on yeast

The Australian Wine Research Institute

- Total Nitrogen in juice is mainly
 - Ammonium
 - Free Amino Acids
- Yeast assimilable N (YAN)

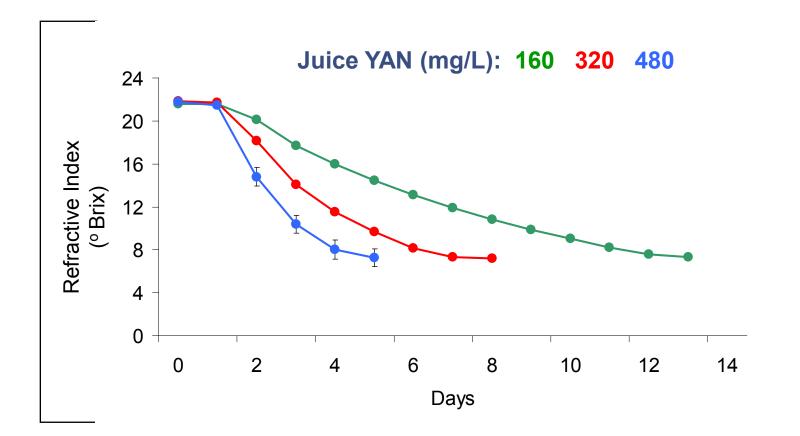

= free amino N (FAN) + ammonium N (NH₄+)

- Yeast will use ammonium N initially, then most assimilable amino acids
- If YAN too low \rightarrow stuck or slow ferments
- Low $N \rightarrow$ lower total amino acids (and more proline)
- High N \rightarrow higher total amino acids (and more arginine)

Does N fertilization affect YAN in grapes?

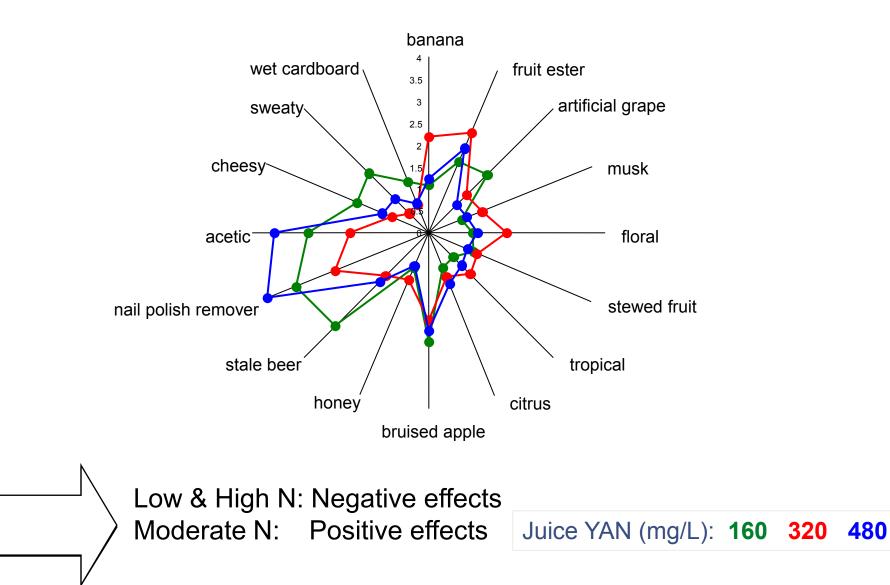
The Australian Wine Research Institute

Grape N that yeast can use



AWRI fermentation study

- Filtered Chardonnay juice
- Low N (YAN = 160 mg/L)
- High N demand yeast (AWRI 796)
- Wine analysis and descriptive sensory analysis



Juice YAN affects: i) yeast growth, ii) fermentation, and iii) fermentation duration

Effect of juice N concentration on wine aroma profile

Increased PR proteins with increased plant N

$\hfill \rightarrow$ haze and increased need for bentonite fining

- No evidence for direct effect of soil K on wine quality
 - Except K deficiency may impair sugar accumulation
- K fertilisation effect on juice K concentration?
 - No consistent results
- Factors such as rootstock type, irrigation, canopy management etc much more influential than K status of soil
 - \clubsuit Reduced irrigation \rightarrow reduced juice K concn
 - \clubsuit Shoot trimming \rightarrow increased leaf blade K concn

High K in juice

- \rightarrow decreased concentration of free acids particularly tartaric (and \uparrow pH)
- \rightarrow may decrease rate of degradation of malic acid
- Reduced colour intensity
- Lack of acidity in flavour
- Poor wine stability

What factors determine how much K ends up in juice?

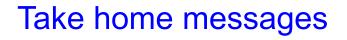
Impact of K movement from leaves to fruit

The Australian Wine Research Institute

EXPOSED CANOPY Less potassium moves from leaves to the berries

 $\begin{array}{l} Shading \rightarrow \uparrow \mbox{ K in leaves at veraison} \\ \rightarrow \uparrow \mbox{ K in berries at maturity} \\ Therefore more \mbox{ K in wine, higher pH} \end{array}$

SHADED CANOPY More potassium moves from leaves to the berries


Direct or indirect effect?

- Direct
 - Rootstock type affects:
 - a) uptake by roots $\sqrt{}$
 - b) transport from roots to shoots $\sqrt{}$
 - c) transport from leaves to fruit ?
- Indirect
 - Rootstock type affects shoot vigour, canopy shading

- Mg deficiency may decrease export of sugar and amino acids to fruit
- No direct effect of Ca
 - High Ca soils usually well drained so may be indirect effect
- High soil Mg or Ca may decrease K uptake by roots \rightarrow lower juice/wine pH
 - Therefore high soil pH (associated with high soil Ca) may be coupled with low wine pH

- Know the nutrient status of your vines so you can correct a * deficiency if there is one
- Wine quality is not easily manipulated by fertiliser practices if * nutrient status is adequate
- N is the only soil nutrient that has a significant impact on wine ••• quality
- N has both direct and indirect effects on fruit composition and wine ** quality
- Only use N fertiliser to correct a deficiency or to maintain adequate * levels (timing is important)
- ** Measure must YAN before fermentation

The AWRI is a member of the Wine Innovation Cluster and is supported by Australia's grapegrowers and winemakers through their investment agency, the Grape and Wine Research and Development Corporation, with matching funds from the Australian Government.

A W R I

Can great wines come from grafted vines?

Mardi Longbottom

Barossa 2011

- What is the rootstock mix in the Barossa?
- Why the bad rap? historical use / evaluation of rootstocks & progress
- Can great wines come from grafted vines?

The Australian Research Institu

In 2010:

11,029 ha of vines, 6631 blocks

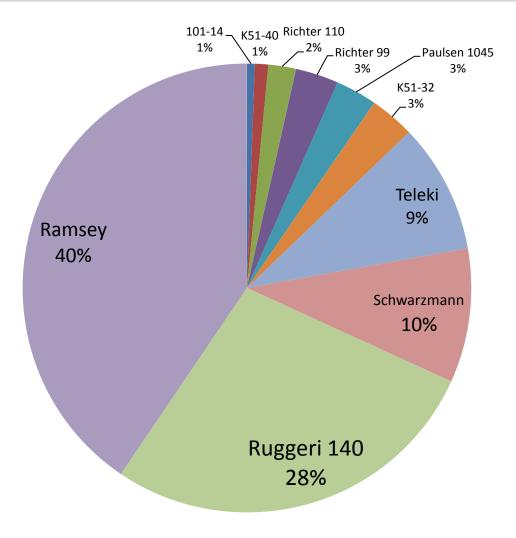
Area on rootstock?

2725 ha or 25%

What is the most common rootstock in the Barossa? Ramsey

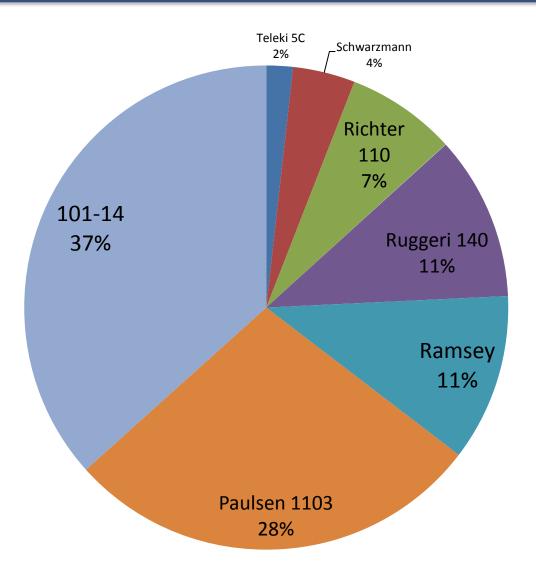
Of those vines on rootstock, what is the most common scion variety?

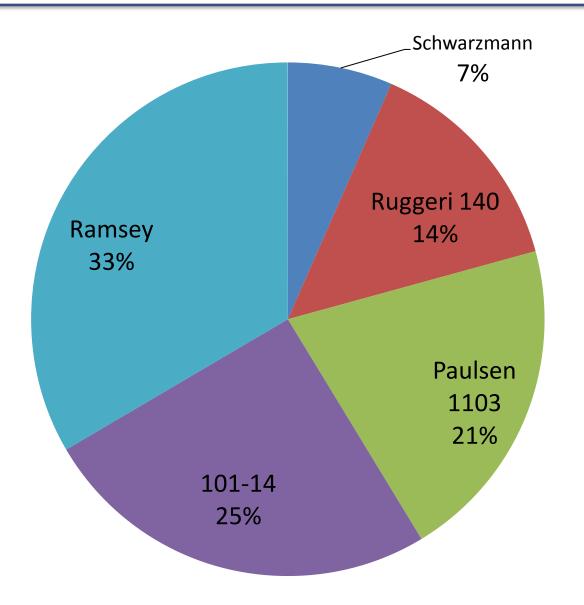
Year	Area (ha)	Scion variety	Rootstock variety
1928	0.3	Semillon	Ramsey
1964	0.4	Semillon	Unknown
1966	0.6	Riesling	K51-32
1975	1.6	Shiraz	101-14
1977	0.5	Cabernet Sauv.	Ramsey
1980	0.34	Riesling	Schwarzmann
1980	1	Semillon	Ramsey


1980-1990 – Ramsey dominated

1990-1995 – Schwarzmann, Ramsey, 140 Ruggeri, 5A Teleki

1995 + - Increased mix but still dominated by the above rootstocks


1990-1999



Barossa 2010

	% var on rtsk	
Grenache	4%	
Cabernet Franc	16%	
Riesling	17%	
Semillon	20%	
Shiraz	24%	
Cabernet Sauvignon	27%	
Viognier	41%	
Chardonnay	42%	
Sauvignon Blanc	47%	
Merlot	52%	

Cheval Blanc

Isole e Olena

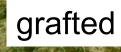
What do these vineyards have in common?

Romaneé-Conti

Vega Sicilia

Do grafted vines have a bad reputation with some winemakers in Australia?

Not in Rutherglen, Corowa, Alpine Valleys, King Valley, Goulburn Valley, Glenrowan, Yarra Valley......

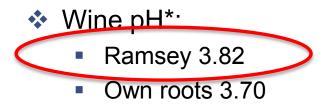


ungrafted

and a second second

ROOTS

- Perhaps reputation mainly applies to nematoderesistant rootstocks?
 - but many of phylloxera-resistant stocks also nematode-resistant


- Commercial evaluation from 1970s
- Main focus on nematode resistance
 - Vigour
 - Yield
- Problems with some high 'vigour' stocks
 - wine with high K, high pH, low colour
 - direct or indirect effect?

Was the 'problem' exaggerated by some winemakers?

The Australian Wine Research Institute

Shiraz, Riverina (1986)

- Ramsey 46% higher yield*
 - * Average over 4 years

Hedberg P. et al. Aust J Exp Agric 26, 511-16 (1986)

Related to potassium accumulation in fruit

- High K
 - champinii parentage
 - eg Ramsey, Freedom, Harmony, K51-32, K51-40
- Moderate K
 - Schwarzmann, 140 Ru, 99 R, 101-14
- Low K
 - 1103 P, 5C Teleki, SO4, 420A, 110 R, 5BB, own roots

What about the wine quality rating?

McLaren Vale: Chardonnay (3 years) (1993)

- Ramsey
- 5C Teleki
- 140 Ruggeri
- Schwarzmann
- own roots (OR)

Grafted higher stield the difference

Source: Ewart, A. et al. (1993) ANZ Wine Ind. J. 8, 270-74

Langhorne Creek: Cabernet Sauvignon (3 years) (2000)

- Ramsey,
 5C Teleki,
 110 R,
 Schwarzmann,
 Own roots
 - Wine (final year only)
 - 5C Teleki better than own roots
 - 5C Teleki higher yield " "

Source: Gawel, R. et al. (2000) ANZ Wine Ind. J. 15(1) 67-53

What has changed in past 25 years?

- Some high vigour stocks discarded
 - eg Dog Ridge, Freedom
- Better matching of scion and stock
- More rootstocks now available that can produce good wine
- Better management of grafted vines
 - eg Yalumba Ramsey story

What has changed in past 25 years?

Not only nematode resistance that is important

- Salt tolerance
- Drought tolerance (avoidance)
- etc

- Low to moderate 'vigour'
- Lower K and pH and better wine than Ramsey, 1103 P or 140 Ru
- Good water-use efficiency
- Good salt tolerance
- Tolerant of phylloxera

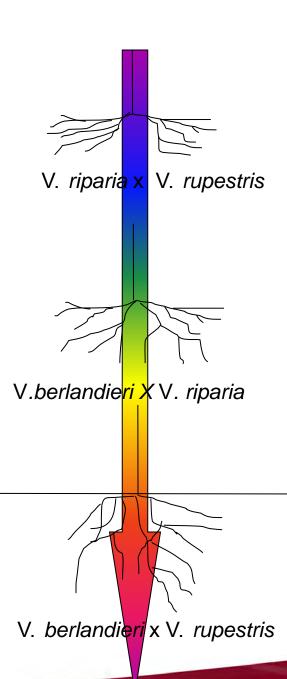
Grafted vines can produce better wine than own roots when:

The Australian Wine Research Institute

Avoidance of excessive water stress

More toler Less salt ι Better N co Earlier or Less within-block variability

Avoidance of excessive water stress / drought tolerance


Rootstock genotype can influence:

- •Root biomass and architecture
- •Hydraulic conductivity

(water uptake/movement into roots & shoots)

- Canopy leaf area
- Stomatal conductance
- Canopy transpiration
- •Yield
- Drought tolerance
- Salinity tolerance

http://waterandvine.gwrdc.com.au

Drought avoidance

Source: Dry, N. (2007)

http://waterandvine.gwrdc.com.au

- Tolerant
 - 1103 P
- Moderately tolerant
 - 140 Ru, Schw., Ramsey, 101-14
- Moderately sensitive
 - 5BB, 5C Teleki, 110 R, 99 R, K51-32
- Sensitive
 - Own roots, 3309, 1202, K51-40

Merlot, Napa:

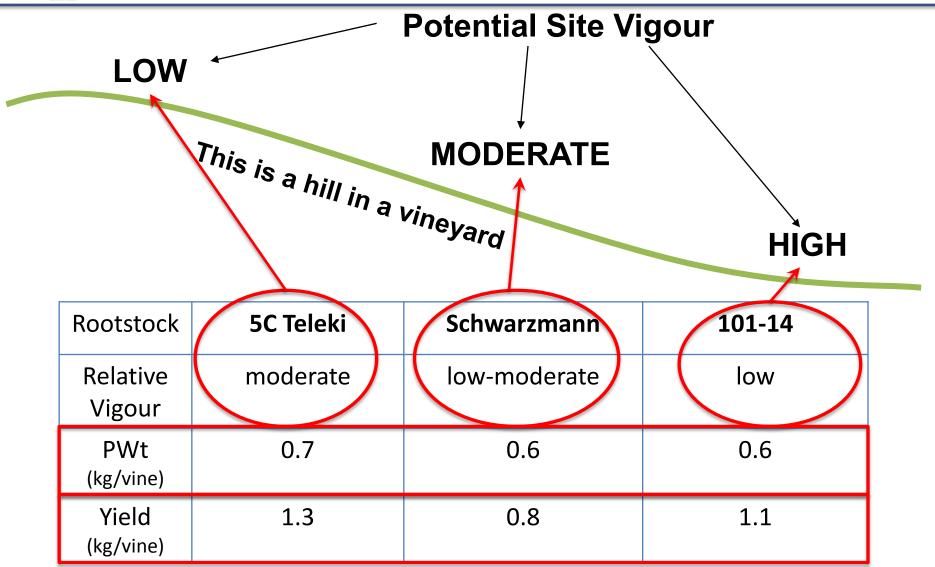
1103 P and 101-14

Rootstock	Nitrogen Fertiliser	YAN (mg/L)
1103 P	None	430
101-14	high	290

Advance

- 101-14, Schw., 3309, 420A, 5C Teleki
- Delay
 - Ramsey, 140 Ru, 1103 P, 110 R, 99 R

But the differences are only minor


Less within-block variability

Source: Phylloxera and Grape Industry Board of SA

Take home message:

If you are dealing with these issues in the vineyard, consider the use of rootstocks as a tool to improve fruit and wine quality

Consider available information in your region

Case study: effect of rootstock on wine quality rating

The Australian Wine Research Institute

Source: Phylloxera and Grape Industry Board of SA

Classification	Price \$/bottle
Super-premium	> 35
Premuim	18 - 35
Semi-premium	12 – 18
Commercial	< 12


Out of all grafted vineyards in study, what % superpremium and premium?

- > 50?
- > 30?
- < 30?</pre>

Quality grading of wines from grafted vines (2005)

McLaren Vale Chardonnay, Coonawarra Cabernet S., Barossa Shiraz

Source: Phylloxera and Grape Industry Board of SA

Most great wines of world are from grafted vines

- The bad reputation of a few nematode-resistant rootstocks for wine quality in the past may have been deserved
- But now the situation is different
 - Better management
 - Better rootstocks

Grafted vines can produce better wine quality than own-roots in many situations due to a combination of traits

For further information

The Australian Wine Research Institute

The Australian Wine Research Institute

PGIBSA

- Catherine Cox, TWE (formerly PGIBSA)
- Nick Dry, Yalumba (formerly PGIBSA)

Questions?

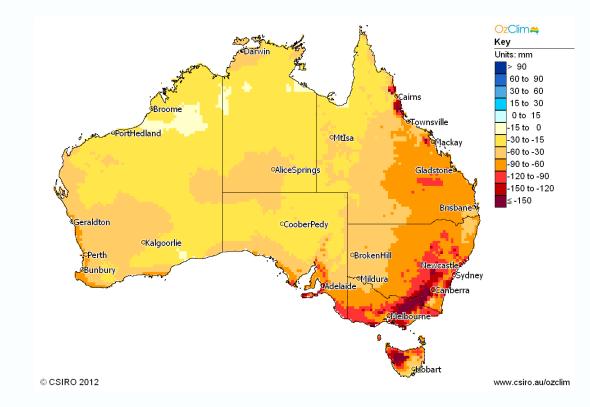
The Australian Wine Research Institute

Improving water use efficiency with rootstocks

Everard J. Edwards Marisa J. Colins, Annette Boettcher, Peter R. Clingeleffer, Rob R. Walker

Plant Industry www.csiro.au

Why improve water use efficiency?

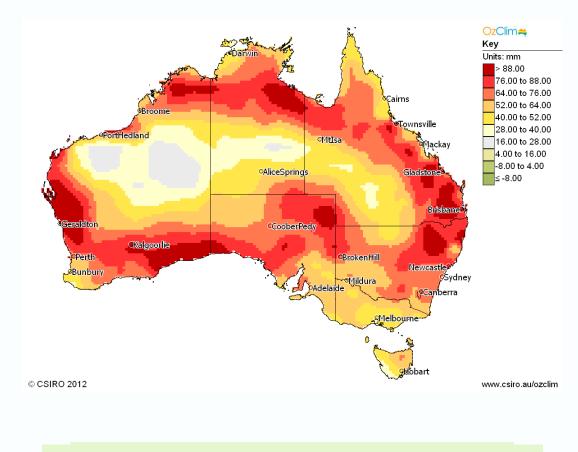

92% of vineyard area in Australia is irrigated,

- 73 GL of water (but <10% of MDB use),
- 4.5% from intercepted on farm rainfall,
- 78% from rivers/irrigation schemes.

Availability of irrigation water is, and will remain, under pressure:

- environmental demands,
- future droughts,
- climate change.

A changing climate – Australia in 2050

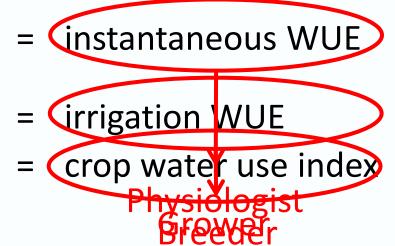

Reduced winter rainfall

OzClim: SRES A1B emission scenario, CSIRO Mk 3.5 model, moderate global warming rate.

A changing climate – Australia in 2050

Hotter summers

State	Air temperature increase
South Australia	+2.3
Victoria	+2.1
New South Wales	+2.5
Western Australia	+2.4
Tasmania	+1.6
ACT	+2.1


Higher evapotranspiration

OzClim: SRES A1B emission scenario, CSIRO Mk 3.5 model, moderate global warming rate.

Water use efficiency (WUE)

Water use efficiency may be defined in many ways:

<u>photosynthesis</u> (leaf level) transpiration fruit mass/irrigation applied as fruit mass/water transpired

To improve WUE we can optimise the crop management, the vine or both (intrinsically linked).

Optimising *the vine* requires improving the crop water use index (CWUI):

i.e. increase yield and/or reduce transpired water.

A role for rootstocks?

Limited acceptance of improved scion varieties by consumers.

Decisions on use of rootstocks by vineyard/winery not marketing.

A role for rootstocks?

Limited acceptance of improved scion varieties by consumers.

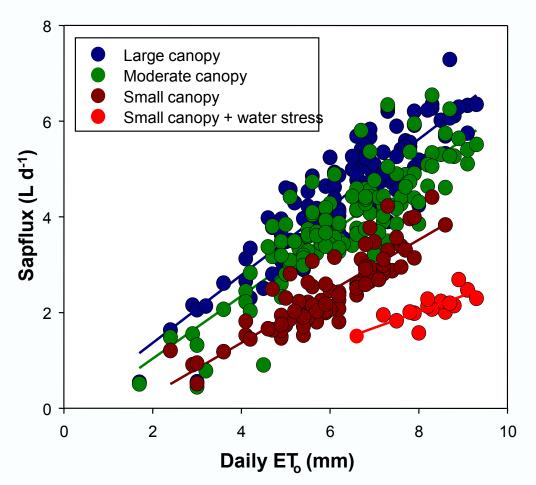
Decisions on use of rootstocks by vineyard/winery not marketing.

Rootstocks known for effect on vigour,

e.g. Ramsey vs 1103 Paulsen.

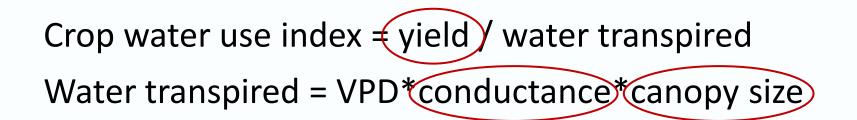
Vigour (canopy size) and water use linked. Opportunity to use rootstocks to alter WUE.

Shiraz on 1103 Paulsen


Shiraz on Ramsey

Crop water use (transpiration)

- Vine water use is a function of:
- •vapour pressure deficit (air dryness),
- •canopy size,
- •stomatal conductance ('ease' of water loss).



For example:

Cabernet Sauvignon, Murray Valley, Australia.

Improving crop water use index (CWUI) with rootstocks

Rootstock choice may alter:

- yield per vine,
- canopy size,
- conductance (via hormones or hydraulics).

Sunraysia rootstock trial

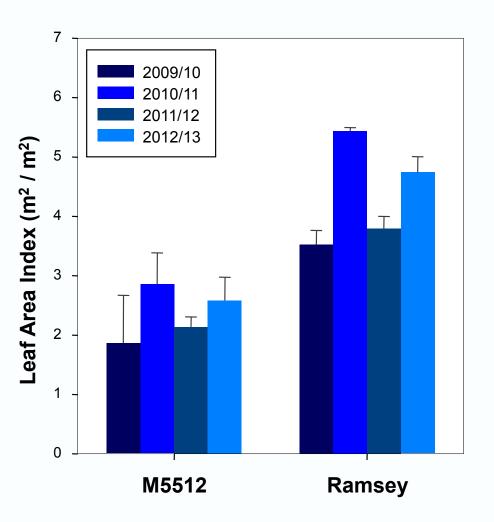
 Grafted with Shiraz. Over 20 years old. Project utilising: Dog Ridge, Ramsey, 1103 Paulsen, 140 Ruggeri, Three CSIRO released stocks (M5489, M5512 & M6262).

60+ rootstocks,

Rootstock conferred vigour: canopy size

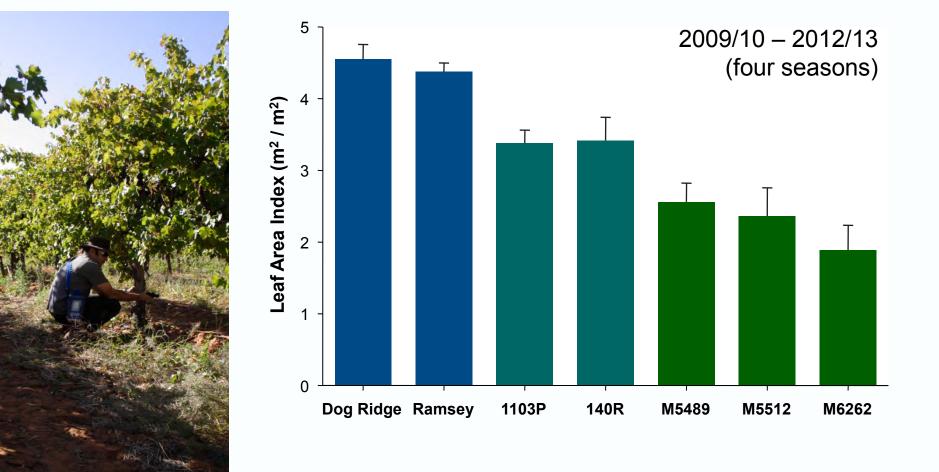
Flowering

Canopy closure


Ramsey

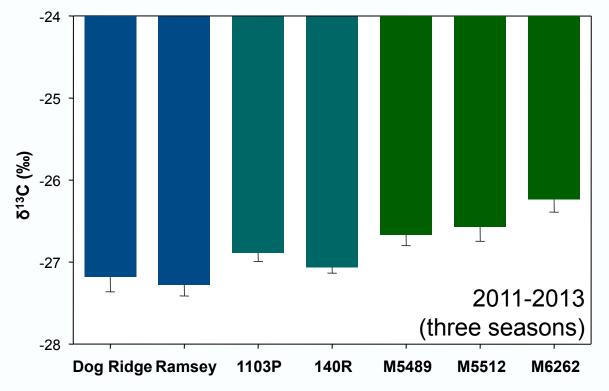
1103 Paulsen

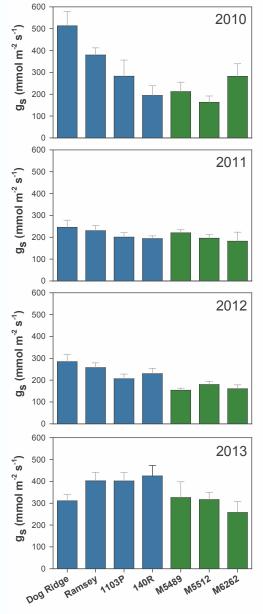
M5512


Canopy size: rootstock and season

- Can directly measure canopy size to compare rootstocks.
- Easiest as *leaf area index* (LAI), area of leaf / area of ground.
- Large effects of both season and rootstock.

Rootstock conferred vigour: canopy size

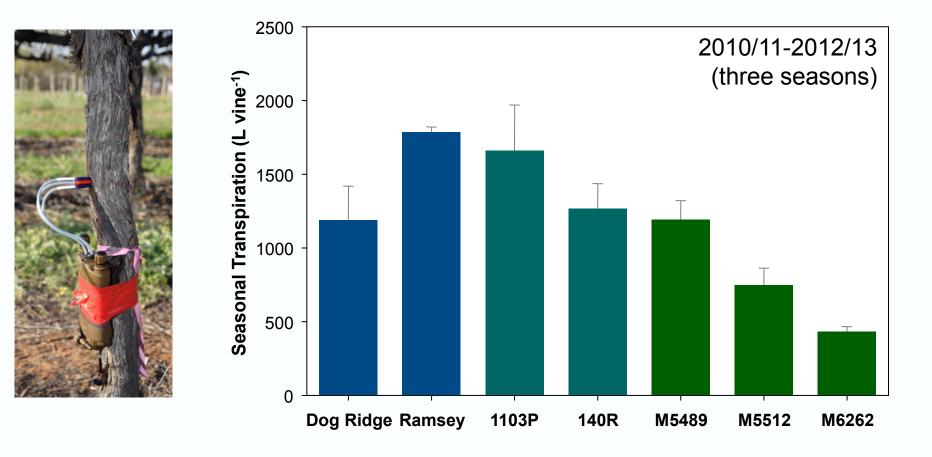

Averaging across many seasons isolates effect of rootstock. Rootstocks split into three groups, two-fold range.



Drivers of water use: stomatal conductance

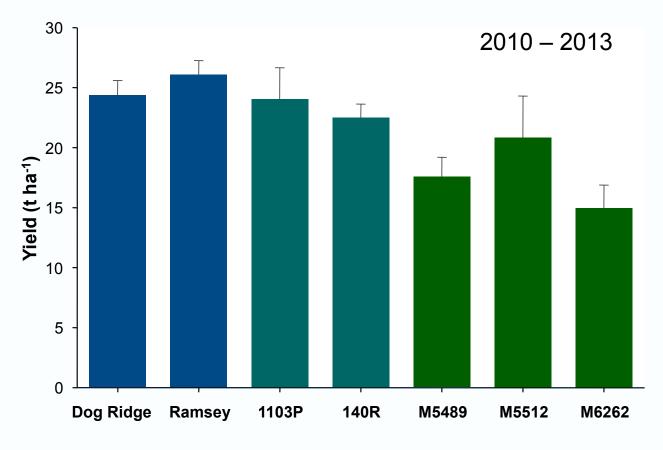
Effect of rootstock on a given day was variable, but typically related to vigour.

Over entire seasons (lower $\delta^{13}C$ = higher conductance), the lower vigour rootstocks conferred lower conductance.



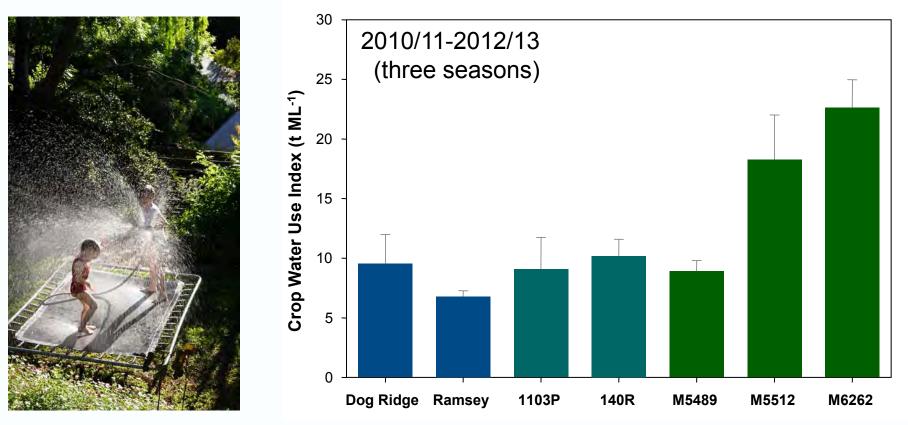
Vine water use – sap flow

Expect rootstock effect on vine water use due to effect on canopy size and conductance.

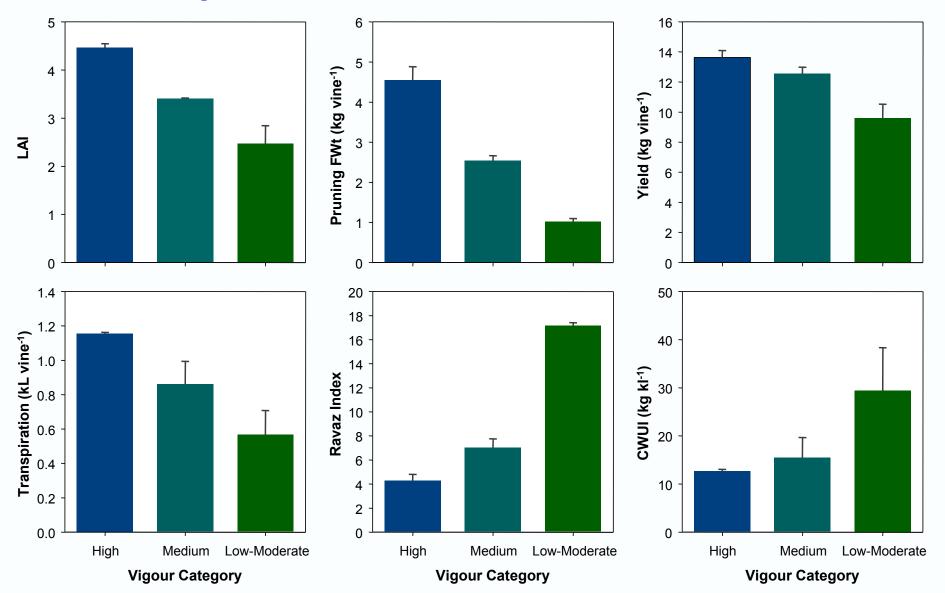

Can measure directly with sap flow sensors.

Rootstock impact on yield

Vigour groupings much less distinct for yield. Some yield penalty for lower vigour.



Mean yield over four seasons, n=6.


Water use efficiency ranking

Same irrigation applied to all vines, therefore *irrigation water use efficiency* = yield rank.

But ranking of vine water use efficiency (defined as CWUI) almost the reverse.

Summary: rootstock effects on water use efficiency

Summary: rootstock effects water use efficiency

- Rootstocks conferred differences in vigour, stomatal conductance and yield.
- Resulted in direct link between rootstock conferred vigour and water use efficiency.
 - Low vigour = high water use efficiency.
- But maximum productivity (yield per ha) only achieved with high vigour rootstock.
- Water savings will only be achieved through irrigating specifically to rootstock.
- Opportunities for higher density planting etc.

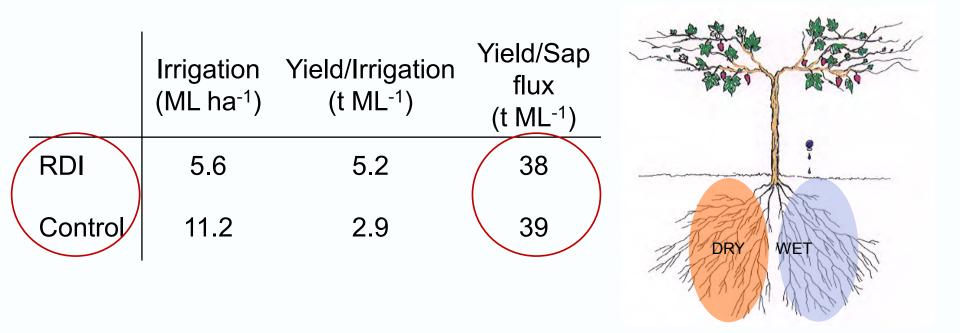
Acknowledgements Arryn Clarke (farm manager). GWRDC funding.

Plant Industry Everard Edwards Research Team Leader

t +61 8 83038649

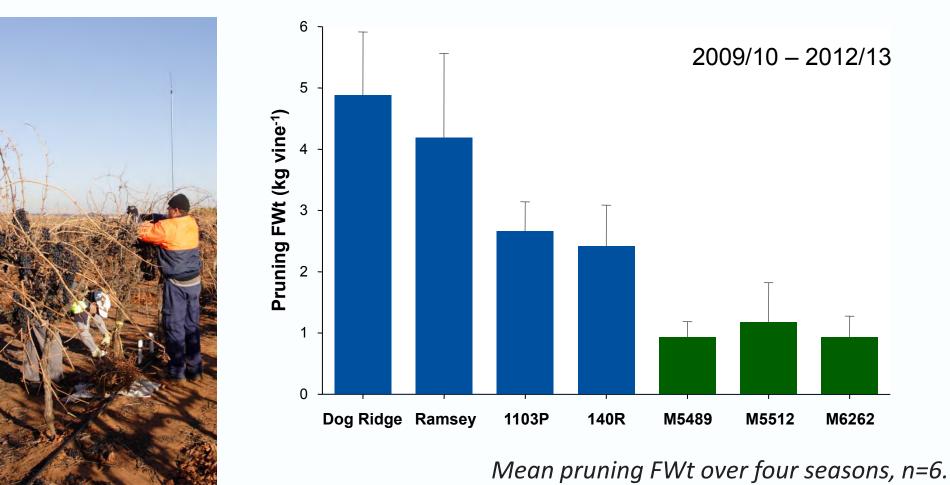
e everard.edwards@csiro.au

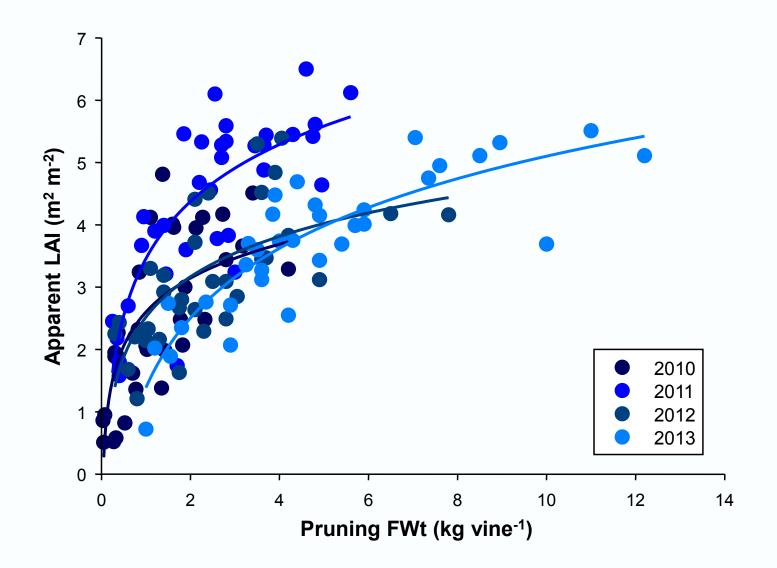
PLANT INDUSTRY www.csiro.au



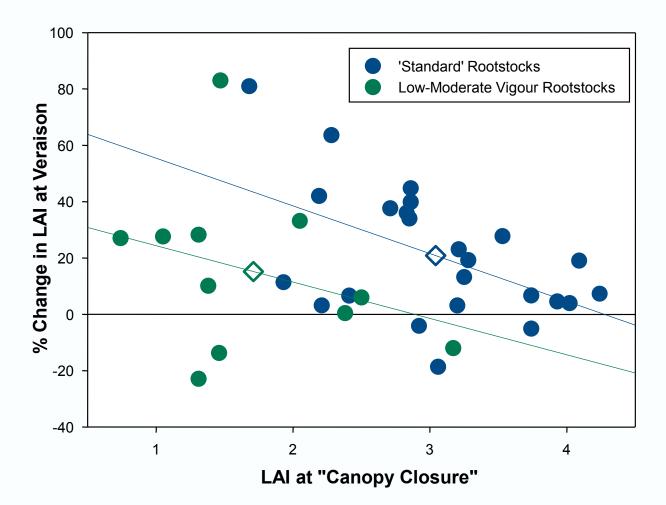
Improving WUE with irrigation strategies?

Irrigation strategies can be used to alter vine water use, e.g. PRD, RDI.

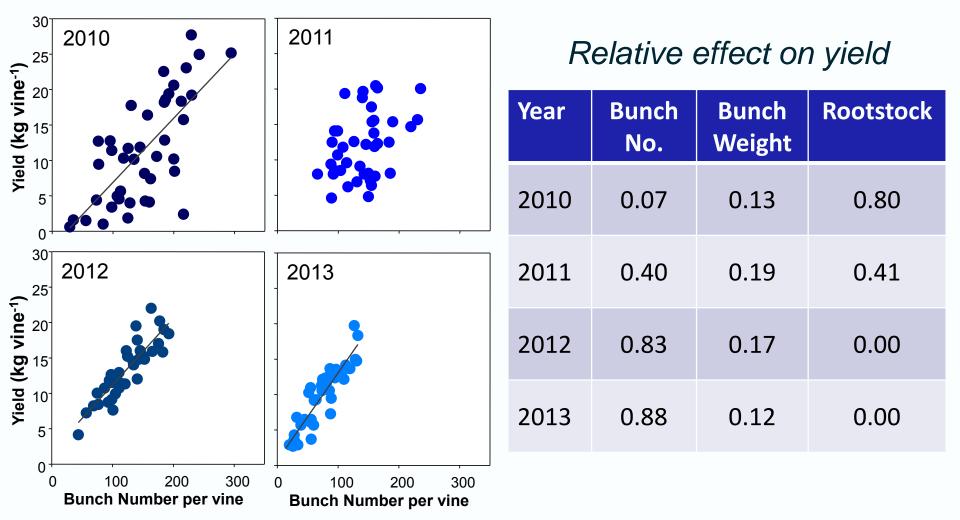

- Do not always improve WUE.
- Can be complex to implement.


Rootstock conferred vigour: pruning weight

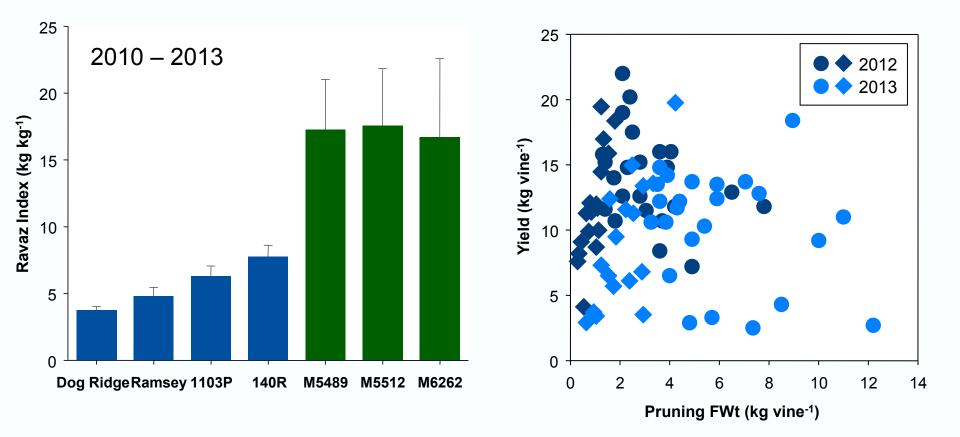
Three vigour groups still apparent.


Four fold difference in pruning weights.

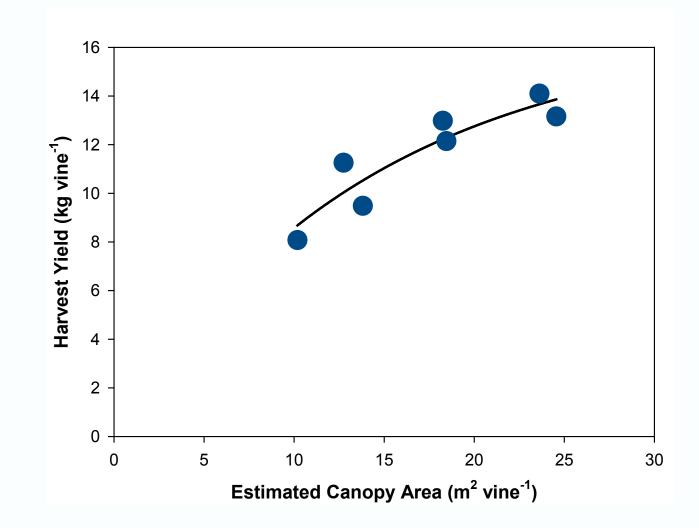
The relationship between leaf area and pruning weight


2010/11 season – extended growth period?

Relative growth similar , but growth reduced at much smaller canopy size in low-moderate stocks.


Rootstock impact on yield components

Rootstock effect on yield primarily via bunch number.2010: shift to drip. 2011: high disease incidence.

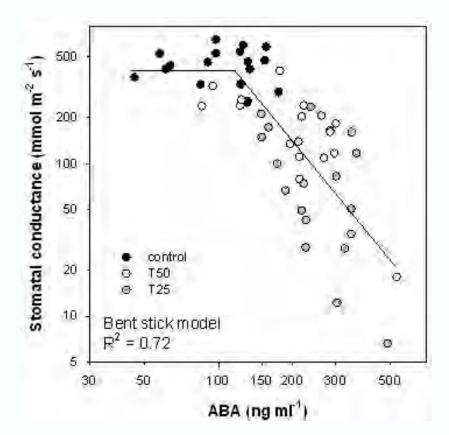


The Ravaz index

= yield / pruning weight Sometimes referred to as harvest index.

Mean index over four seasons, n=6.

Root : shoot communication

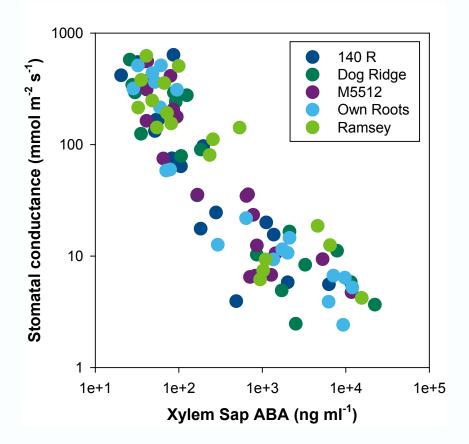

Rootstock effects on the scion (and *vice versa*) are the result of root : shoot communication.

Root : shoot signalling may be:

- chemical signals (e.g. plant hormones, ions, assimilate supply)
- mechanical signals (e.g. hydraulics)
- Effects can be long-term (e.g. vigour) or short-term (e.g. ABA production during drought).
- We need to understand the mechanisms behind rootstock effects on the scion for:
 - targeted breeding,
 - efficient evaluation of current rootstocks,
 - optimisation of resource management.

Rootstocks, drought and WUE

- Does improved WUE = drought tolerance?
- Existing evidence suggests high vigour = drought tolerance.
- Current project also examining:
 - Interactions with water deficit.
 - Interactions with salinity.
- Rootstocks could alter drought avoidance or tolerance.
- Canopy response to deficit largely governed by ABA.


Collins & Loveys 2010

Root produced hormones?

Roots produce a number of chemical signals that can influence aboveground part of plant.

But do signals actually differ between rootstocks?

If so, does scion metabolism adjust to the differences?

Water availability and ABA

ABA at end of experiment lower in Merbein 5512.

Stomatal conductance higher during drought stress.

Rootstock choice has the potential to alter vine response to abiotic stress.

Glasshouse experiment on 1 yr old vines, five weeks deficit irrigation. Xylem ABA of well watered control: 50-100 ng ml⁻¹. Excluded for clarity. Mean soil H2O in M5512: 6.7% Mean soil H2O in standards: 8.2%

The Australian Wine Research Institute

Winery Cost Reduction Strategies

Neil Scrimgeour Research Manager, Commercial Services

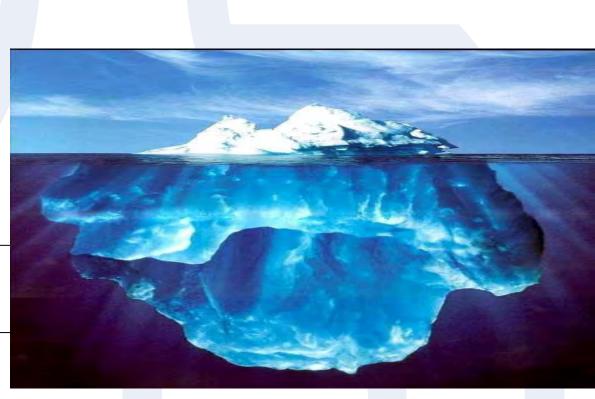
Understanding customer value

What does the market/consumer want?

Attribute	Levels	Importance
Brand, packaging, origin	32	36.1%
Price	8	16.0%
Medal	4	15.0%
Wine sensory description	2	12.4%
Rating points	2	8.4%
Managers recommendation	2	5.6%
Alcohol level	4	2.5%
Price discount	4	2.3%
In store tasting available	2	1.3%
Closure	2	0.4%

Core product and pricing: 57%

Awards and shelf communication: 43%

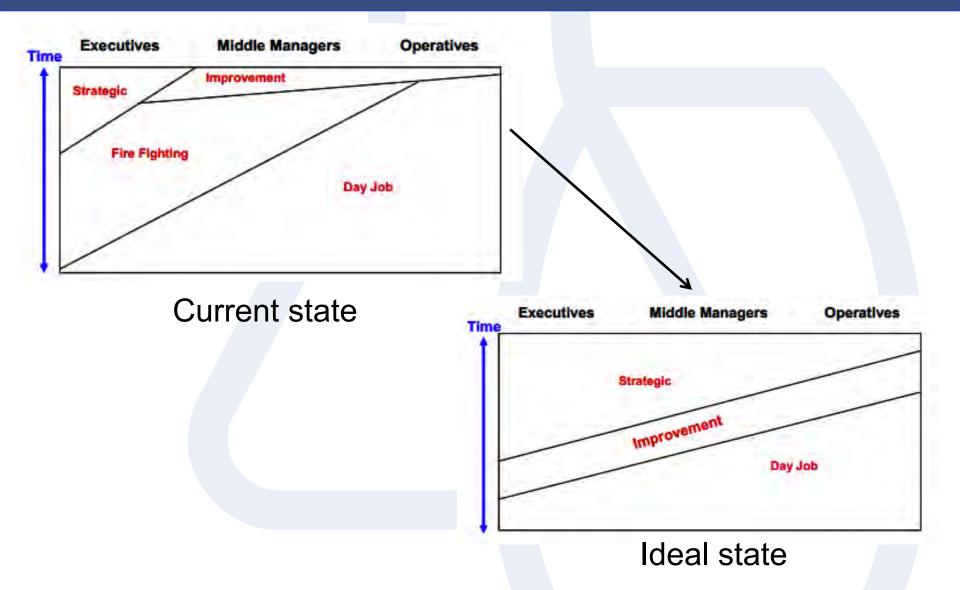

Discrete Choice Experiment

Maximise value/ minimise waste

"Customer Value-Adding" The tip of the iceberg

Customer Non Value-Added Steps "The hidden opportunity for improvement"

Tradition vs Innovation


Familiar Comfortable Safe

Costly Onerous Limiting

The impact on organisational roles

Data management

90%

Supporting Australian producers

Activities based costing

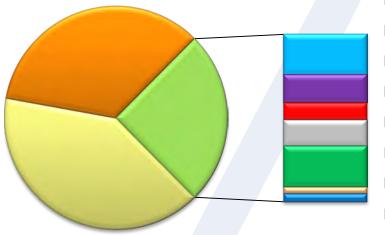
Determining the true cost of production

Direct costs

- Materials (Grapes)
- Labour

Activities

- Crushing
- Ferment
- Pressing
- 2nd Ferment
- Maturation
- Quality assessment
- Blending/ullage mngt
- Packaging

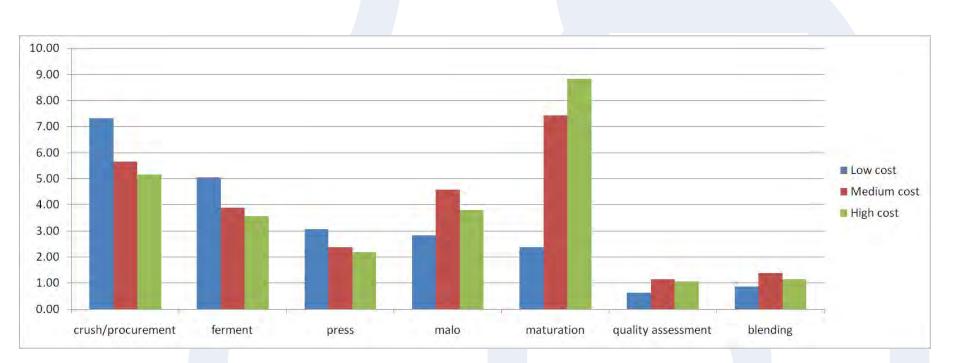


Cost pools

- Production management
- Utilities
- Waste management
- Process equipment
- Laboratory

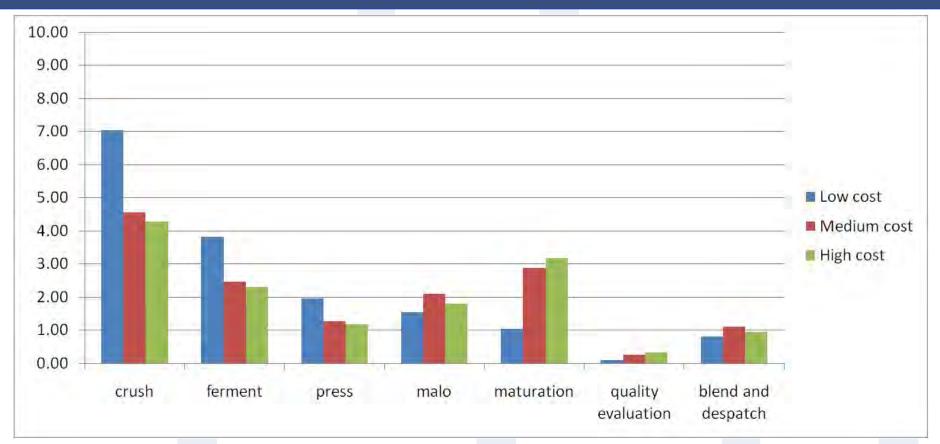
The cost of production

- packaging
- grapes
- crush/procurement
- 🖬 ferment
- press
- 🛯 malo
- maturation
- ■quality assessment
- blending


Opportunities exist at:

- Crush
- Ferment
- Maturation

Highly complex grading system and large number of processing units


Distribution of costs for product ranges

- Low price point product opportunities at crushing
- High price point product opportunities at maturation

Labour cost contributions

- Procurement and crushing costs driven by labour
- Malo by analytical costs
- Maturation by barrels

Maximising value from grapes

1. Maximise use of low cost grapes

- Design wine styles around varieties that enable high tonnage cropping (Colombard, Fiesta etc)
- Incorporate high yield grapes as "fillers" into blends
- Processing options to enhance flavour and aroma

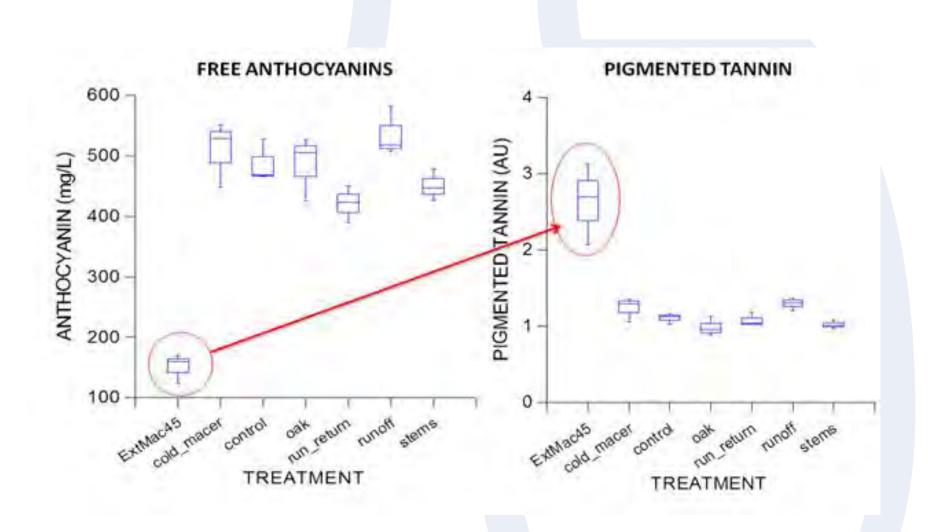
2. Maximise grape yield (>40tpha)

- Heavy irrigation throughout entire ripening period
- Targeted or no pruning regimes
- Appropriate trellis designs
- Spray irrigation in close proximity to harvest

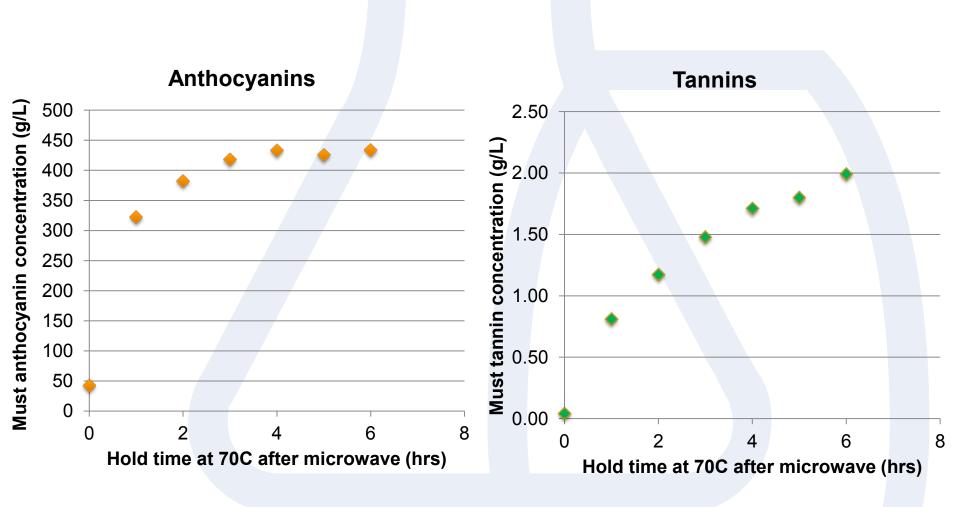
3. Maximise production yield

- Wine styles that allow minimal separation of press fractions
- Less conservative press fraction cuts

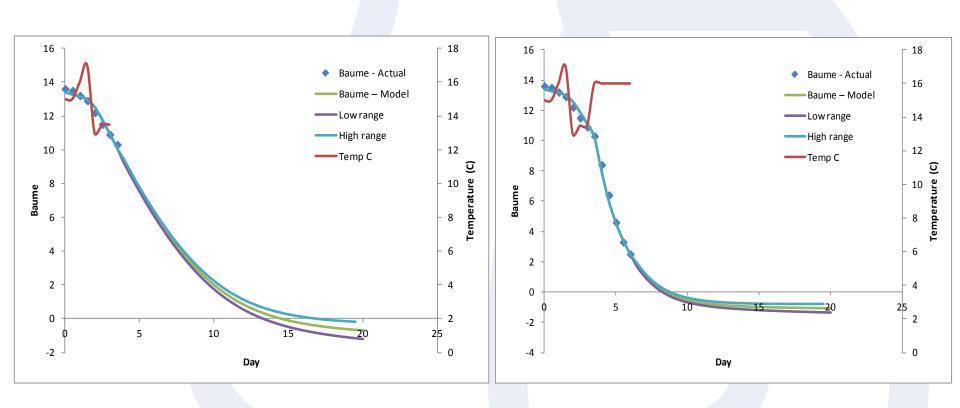
Benefit - Reduced cost of grape juice


Research requirements

- Impact on consumers
- Demonstration studies how to implement yield increase and minimise value loss
- True cost evaluations reduced juice cost versus increased complexity in blending operations



Maximising value from grapes



Maximising value from grapes

Predicting ferment behaviour

Alternative maturation

Reducing Wine Transfers

1. Reduce number of processing units

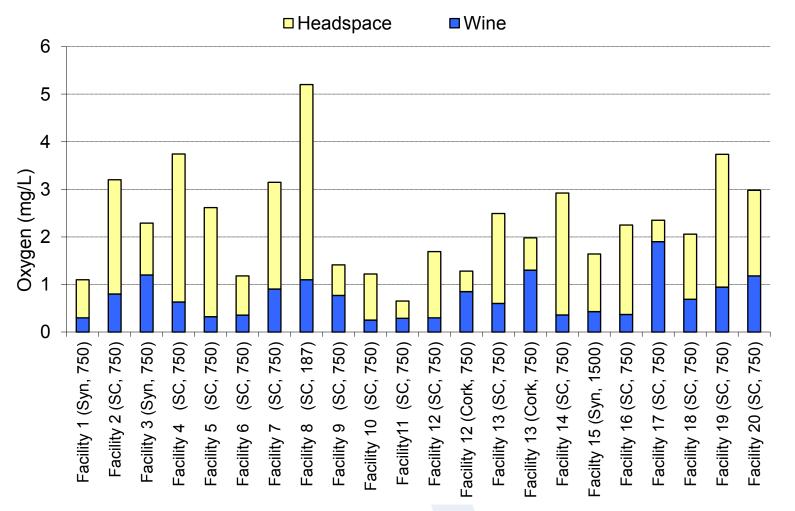
- Less quality categories
- Less product types
- Blend earlier in value chain

2. Minimise ullage management activities

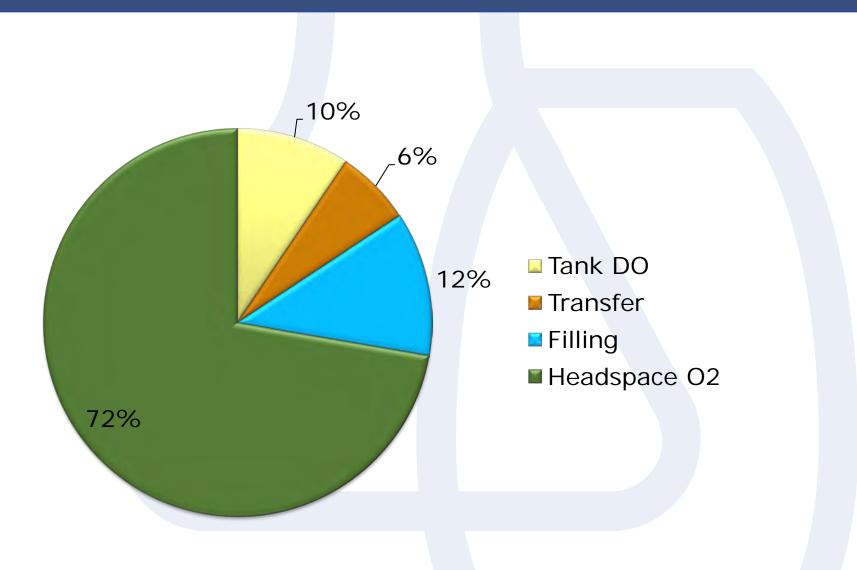
- Finished wines often transferred 8 times to avoid tanks being left on ullage
 - Staff devoted to packing down tanks and managing ullages
 - o Large inert gas costs
 - o Bottling to bin
- Eliminate need to pack down
 - OTR 4L per day
 - Thermal expansion 0.15 mg/L per refrigeration event
 - o Open lid 28L per event
 - o CO2 use ineffective

Benefit

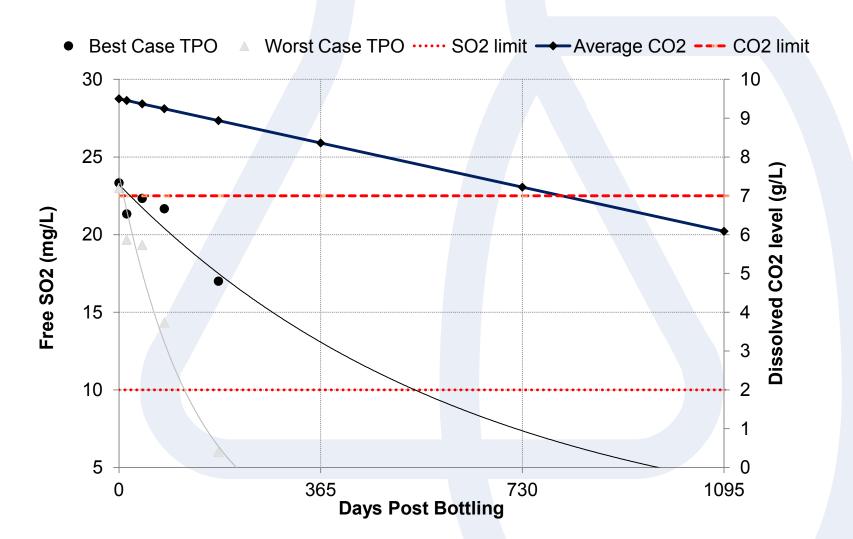
- Improved efficiency of resource use
- Improvement to environmental performance


Research requirements

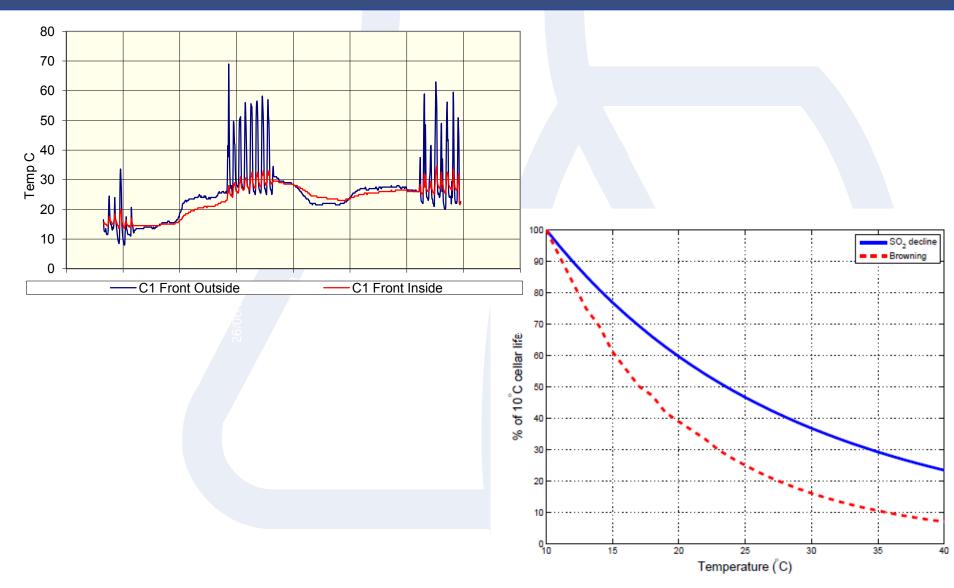
Requires fundamental development work on sparging ; oxygen damage; volatile loss & ageing on wine value


Packaging challenges

TPO Benchmarking



Packaging challenges



Shelf-life impact

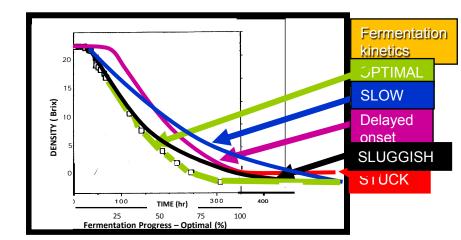
Impact of shipping

Summary of Opportunities

- Maximise value from grapes
- Better control and added value from fermentations
- Alternative maturation
- Reduce process complexity
- Managing ullage effectively AND reducing wine transfers
- Controlling packaging and downstream impact

The Australian Wine Research Institute

Thank you

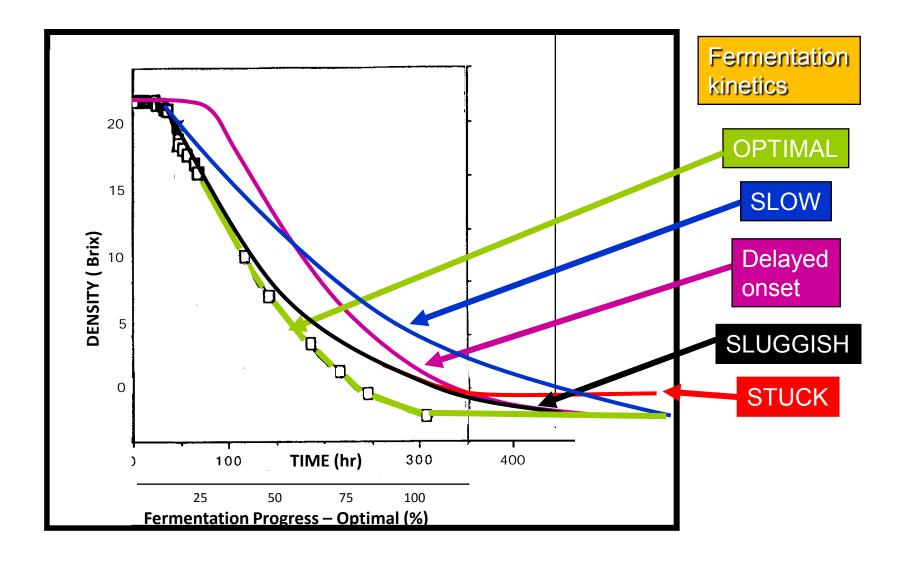


Causes and Management of Slow and Stuck Fermentations

Paul Henschke, and

AWRI Industry Development & Support team

- Con Simos
- Adrian Coulter
- Geoff Cowey
- Matt Holdstock



- A common seasonal problem, but exacerbated by hot weather
- Affects most wineries at some stage, both in Australia and overseas
- White, red & sparkling wines, in tanks & barrels
- <u>Multifactorial problem</u>, including yeast, nutrients, toxic substances and fermentation conditions/management
- Most (all ?) yeast types are affected, including benchmark
 EC1118/PDM/Prise de Mousse
- Expensive in resources (time, energy, yeast, tank space) and potential loss of quality
- >>> This talk contains practical information on how to reduce the risk and how to rescue a fermentation

Sub-optimal fermentation profile

The Australian Wine Research Institute

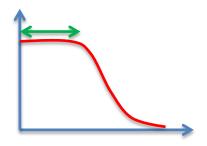
Environmental changes during fermentation - major stresses to which yeast must adapt

The Australian Wine Research Institute

Factor	Grape juice	Wine
Sugar (g/L)	180 – 260	0 – 4
Alcohol (% v/v)	0	10 – 16
Nutrients:		
YAN (mg N/L)	50 – 300	<50
Oxygen (ppm)	0 – 9	0
Conditions	Nutrient rich	Nutrient poor High conc. toxic products

Failure to adapt results in sub-optimal fermentation

The Australian Wine Research Institute

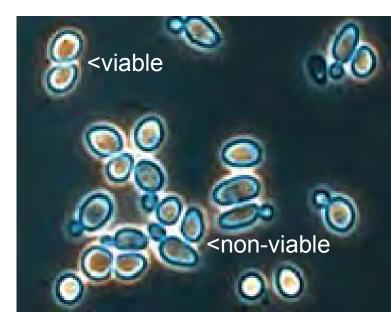

Delayed onset of fermentation

Causes:

- Poor quality starter culture
 - Low viability or low cell count/inoculation rate
 - Poor physiological condition (low metabolic rate)
- High SO₂, resulting in growth inhibition until level of free SO₂ has decreased below a critical point

Diagnosis:

- Perform a microscopic cell count before & after treating the sample with vital stain, eg methylene blue (see lland et al. 2007)
- Viability <75% indicates poor yeast culture or must toxicity, eg SO₂
- Measure must/juice SO₂; should be <10-15 mg/L free SO₂



Vital staining of yeast culture to assess culture health (viability)

- Methylene blue is a dye that is used to differentiate live and dead yeast cells in a culture.
- Methylene blue is a redox sensitive dye, such that metabolically active cells reduce it to the colourless form; viable cells are highly reductive.
- Dead cells (non-metabolically active) stain blue, ie the oxidised form.
- Population viability is a strong indicator of culture health:
 - Healthy culture typically contains
 >95-98% viable cells
 - <75% viability indicates toxicity,
 which can lead to stalled fermentation

Consult Iland et al (2007): Microbiological analysis of grapes and wine: techniques and concepts

The Australian Wine Research Institute

Slow (continuously) fermentation

Causes:

- Low yeast biomass or cell number
- Low budding index

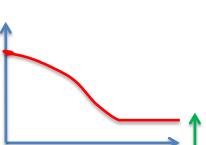
Low level of key nutrient, typically YAN, O₂ or lipids

Diagnosis:

- Confirm by microscopic cell count:
 - 0% FP (Fermentation Progress) count should be >1-5x10⁶ cells/mL;
 - 35% FP should exceed 50x10⁶ cells/mL
- Measure juice/must YAN, should exceed 100-150 mg N/L
- Failure of aeration or grape solids addition to stimulate fermentation suggests deficiency of a key nutrient, eg YAN

Causes of sub-optimal fermentation

Sluggish & Stuck fermentation


Causes:

Multifactorial problem

Interaction between:

- 1. <u>yeast strain</u>
- 2. juice/must (nutrients, toxic substances) and
- 3. <u>fermentation conditions/management</u> (under control of winemaker)
- Most yeast types are affected, including the industry benchmark strains EC1118 / PDM / Prise de Mousse

Diagnosis: complex & the subject of this talk

The Australian Wine Research Institute

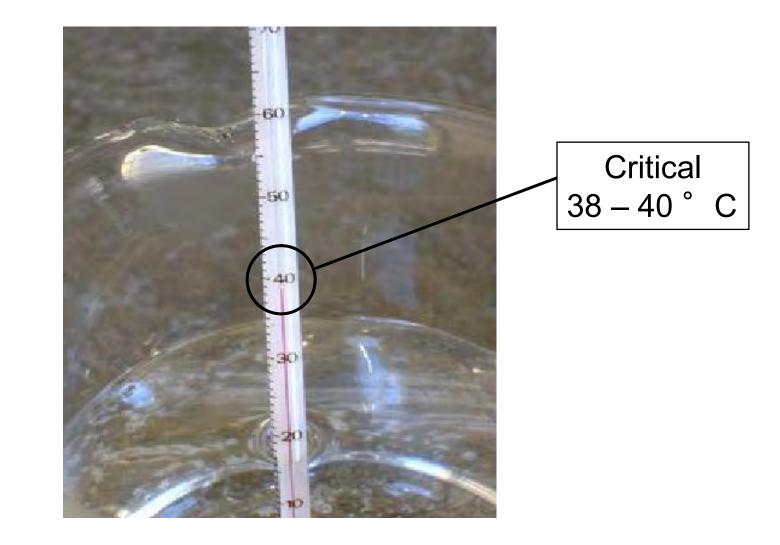
Sub-optimal fermentation kinetics

Risk Factors – common high risk factors

The Australian Wine Research Institute

Yeast-related factors	 incorrect choice (alcohol stress tolerance)
	 poor quality starter culture
	 rehydration / reactivation
	- viability / vitality
	 indigenous microflora (esp yeast & LAB)
	 unsuccessful inoculation
	temperature stress
	 vigour and sedimentation
Nutrient deficiency	• yeast assimilable nitrogen (YAN)
Nutrient denciency	
	 <u>phytolipids (grape solids – clarification)</u>
	• <u>oxygen</u>
	 vitamins (thiamin)
	 minerals (ie low K+ & pH)
Inhibitors	• high concentration of sugar (high Brix/Be)
	high ethanol
	 fatty acids (acetic acid & mid chain length FAs)
	• SO_2
	 toxic (killer) proteins/other organisms
Adapted from Henschke (1997)	 residues (pesticides, cleaning agents)
ASVO Seminar Procs pp. 30-38,41	• residues (pesticides, clearing ayerits)

Active Dried Yeast Rehydration/reactivation risk factors



- Follow manufacturers instructions precisely
- Rehydration medium
 - Tap/Mineral water/Grape juice or diluted concentrate
 - Consider proprietary 'inactivated yeast' reactivation nutrients rich in sterols for high risk juices [ie high sugar (>13 Be), bright (low solids), low YAN (<150 mg/L), to be fermented cold (<15C)]
- Temperature of medium: 38-40 C unless specified
- Ensure yeast is correctly rehydrated
- Use within 30 min of rehydration
- Do not use expired stock

Hydration temperature is very important

The Australian Wine Research Institute

The Australian Wine Research Institute

Correct

Incorrect

Active Dried Yeast Rehydration/reactivation risk factors

The Australian Wine Research Institute

- <u>Add rehydrated yeast to pre-warmed juice</u> (ie after cold settling or cold soak, preferably >15°C
- <u>Step-wise cool reactivated yeast</u> in 5-10°C steps at 5 min intervals by adding appropriate volumes of the juice to be inoculated <u>for high risk juices</u> (ie cold (<15°C), highly clarified, anaerobic, high sugar juice ferments)
- Ensure sufficient time has elapsed after SO_2 addition to must to avoid damaging yeast (<10 ppm SO_2 @ pH3.5) – consider adding a 'sacrificial culture' of about 15–20% of aerated active yeast (containing aldehyde) to the juice in order to bind SO_2 and other potentially inhibiting substances, about 30 min before inoculation

Add yeast hulls for high risk ferments (detoxification role)

- ✤ Allow ~10% of sugar to ferment before cooling
 - It is critical to build-up cell number (growing yeast v. stress sensitive)
 - Do not cool in greater than 2-4° C increments

Monitor fermentation progress & temperature daily

- Spreadsheets provide an efficient record of fermentation data, comparison with similar ferments and early identification of problems

- Look for a steady fermentation rate; compare with previous data of similar ferments and/or previous years data to identify problems
- Cell numbers should reach 70 x 10⁶ cells per ml for cellar bright juice ferments (determine with microscope and haemocytometer)
 - Monitor budding % as an indication of yeast growth or problems
 - Expect high % budding during first third stage of fermentation

- Vital staining (eg methylene blue) is also a useful diagnostic for dead yeast cell estimation – check when fermentation rate becomes slow

- Also look for presence of (lactic acid) bacteria, which can adversely affect yeast activity and lead to fermentation arrest

The Australian Wine Research Institute

Factors affecting yeast implantation

- Pure culture inoculation strategy
 - Maximising the benefits of selected yeast strains

Minimise indigenous yeast population of must (<10⁵ cfu/ml)

- Minimise must exposure to moderate-hot temperature, during harvest, transport, juice preparation (enzyme treatment, clarification, etc) which otherwise promotes indigenous yeast & bacteria growth

- Add sufficient SO₂ (50-100 ppm, depending on fruit condition) during machine harvest to limit indigenous microbial growth

- Clarification procedures can lower indigenous microbial growth

- High indigenous yeast count can indicate nutrient depletion – add nutrs.

Recommended Inoculation rates

Under inoculation will compromise ability of culture yeast to dominate

- whites: 5 x 10⁶ cells/ml (typically 250 g ADWY per kL juice);
- reds: 5 x 10⁶ cells/ml ; lower rates can compromise yeast implantation (typically 200 g ADWY per Tonne must)

Yeast Assimilable Nitrogen (YAN)

- A variable proportion of Australian juices/musts have inadequate YAN
- Measure YAN on a grape maturity sample or juice sample
- Low YAN (whites <150 mg N/L; reds <100 mg N/L) high risk slow/stuck ferm</p>
- Adjust with DAP (200 mg N/1g DAP) or proprietary N supplement
- Lipid deficiency (phytosterols and unsaturated fatty acids (UFA))
 - Over clarification removes lipids essential for yeast growth
 - i.e. when <0.1-0.5 v/v juice solids (ie 'cellar bright') or <5 NTU</p>
 - Addition of "fine" settled grape solids highly stimulatory to yeast growth
 - Avoid "hard" settled grape solids, which can impart phenolic coarseness, hotness, bitterness to wine
 - Rehydrate yeast with proprietary inactivated yeast product rich in sterols

Dissolved Oxygen (dO₂)

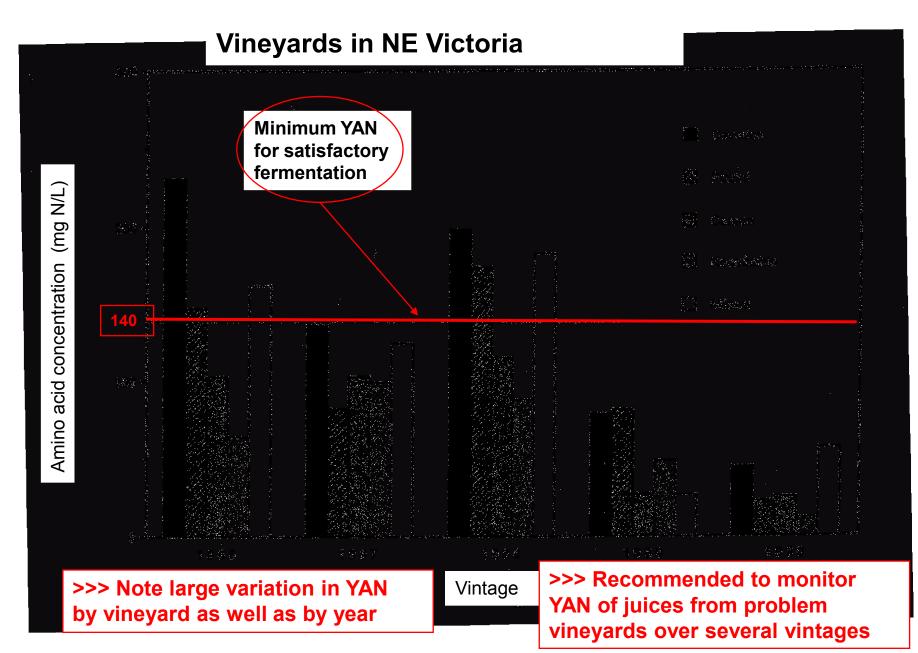
- dO₂ is highly variable in juice/must ranging 0 8 ppm (air-saturated)
- <u>Aerating fermentations at least once</u>, at the stage when they are most active (during fermentation of 35-50% sugar) is highly beneficial
- Aerate to give max ~5 ppm oxygen (sparge, pump over, rack-return, etc)
- Oxygen alleviates yeast REDOX imbalance & stimulates sterol formation

Vitamins

- Vitamin status of Australian musts/juices is unknown
- Thiamine essential for ethanol production by yeast

- major losses caused by high SO₂ use and wild yeast growth (ie during transport or must processing)

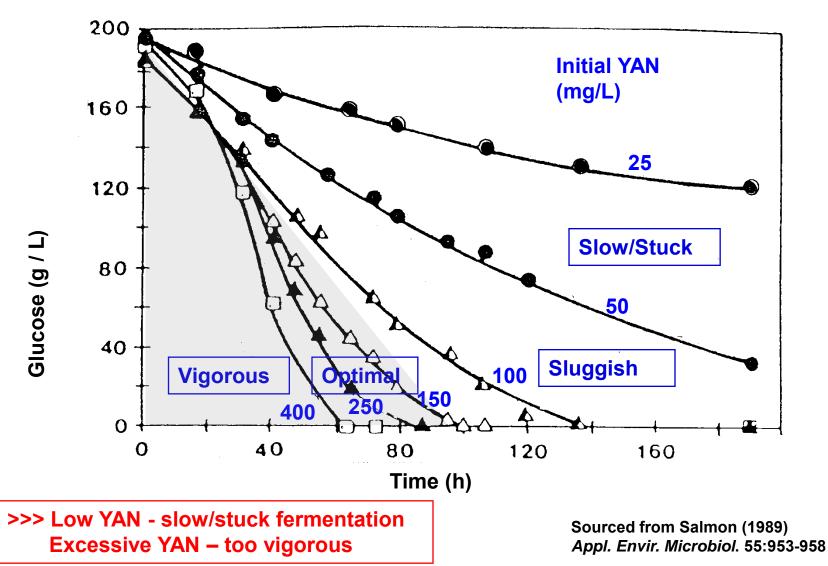
- Vitamins (thiamine, niacin, biotin, pantothenate, pyridoxine, inositol) can be added to starter cultures under ANZFA Wine Regulations
- Some proprietary yeast foods provide a useful source of vitamins


Minerals

- Mineral status of Australian musts/juices poorly known (see Schmidt et al 2010)
- Phosphate normally considered adequate; can be added with DAP
- Low K⁺/Low pH stuck ferms with some yeast strains (sparkling/tirage or early harvest must)
- Magnesium, zinc, manganese, which are enzyme co-factors are thought to be suboptimal (these cannot be added under ANZFA Wine Regulations)
- Some proprietary yeast foods provide a limited source of minerals and can be beneficial

Low YAN juices/musts

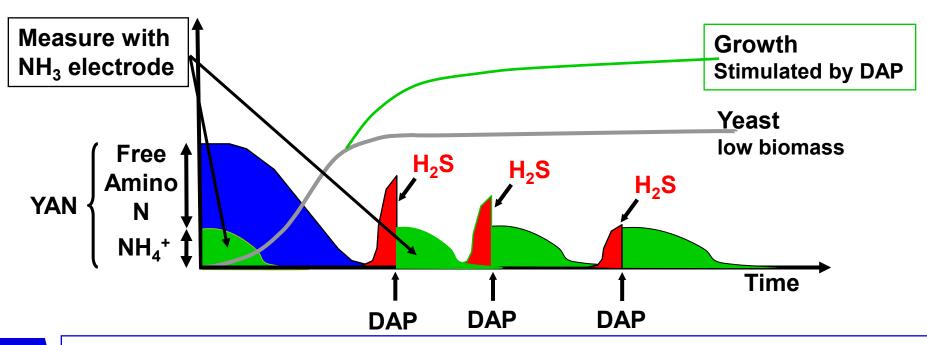
- Low YAN musts can also be suboptimal in other nutrients
- Useful to add proprietary inactivated yeast nutrients to yeast starter cultures when deficiencies are suspected, especially to difficult to ferment juices/musts


Vineyard & Year effect on juice YAN

Fermentation response to YAN

Synthetic juice ≡ 'cellar bright' juice

All other nutrients are adequate, representing Nitrogen-limited growth



Nitrogen utilisation – Low YAN fermentation Risk of H₂S as well as slow fermentation

The Australian Wine Research Institute

Low Nitrogen (<200 mg N/L) Low biomass increases risk of slow/stuck fermentation and H_2S production

- Inverse relationship between Initial YAN and H₂S production
 Initial YAN should exceed 250 mg N/L YAN to prevent H₂S
- but H₂S profile depends on yeast strain X juice/must interactn
- Not all Yeast H₂S responds to DAP; could be a vitamin deficiency?

YAN Requirements of Yeast

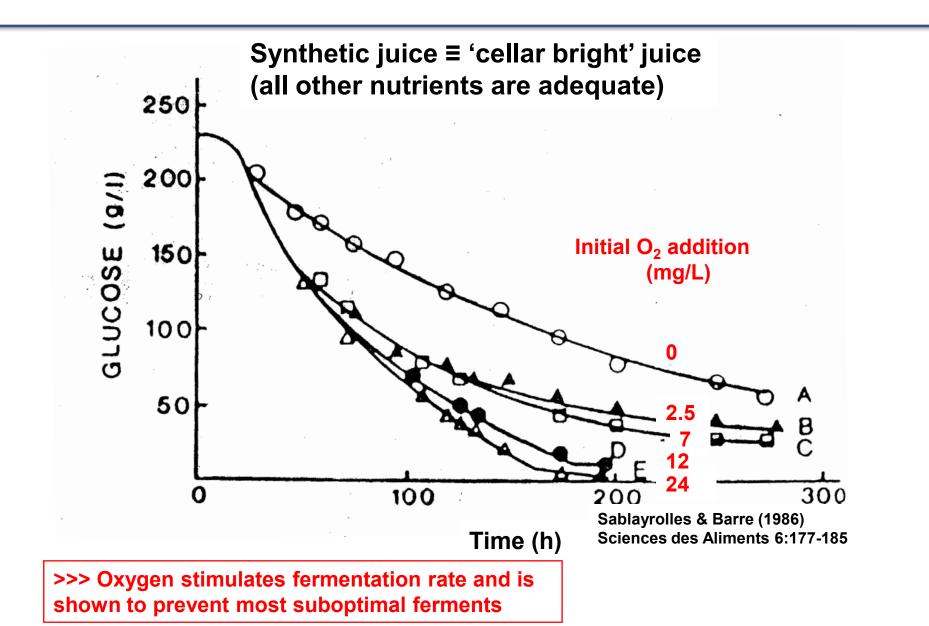
The Australian Wine Research Institute

(depends on yeast, solids content, fermentation conditions & wine style)

- 1. Maximum N demand:
 - Mean = 400 mg N/LRange = 330 - 470 mg N/L
- 2. Minimum YAN requirement

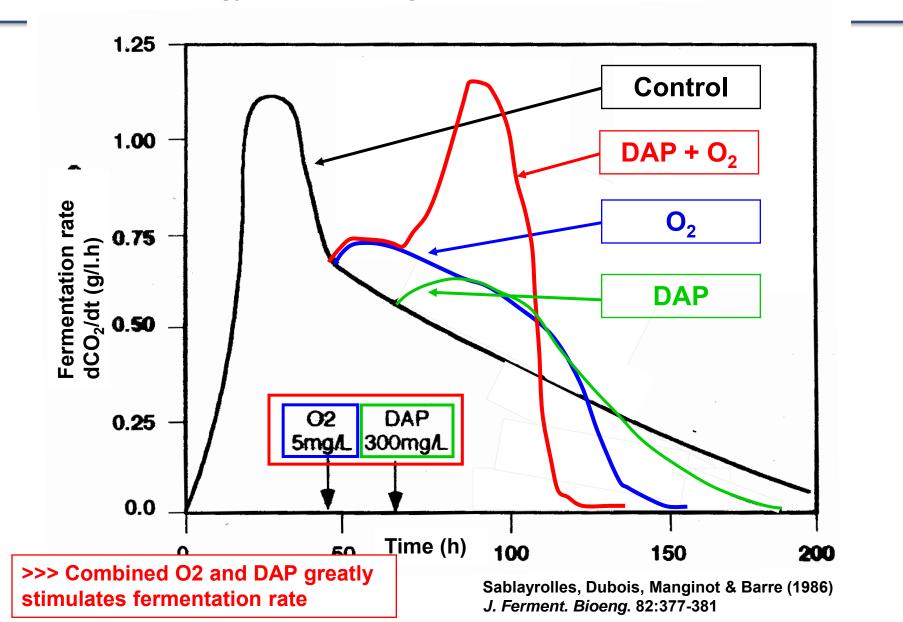
Whites (clarified) – approx. 150 mg/L

Reds (high solids) – approx. 100 mg/L

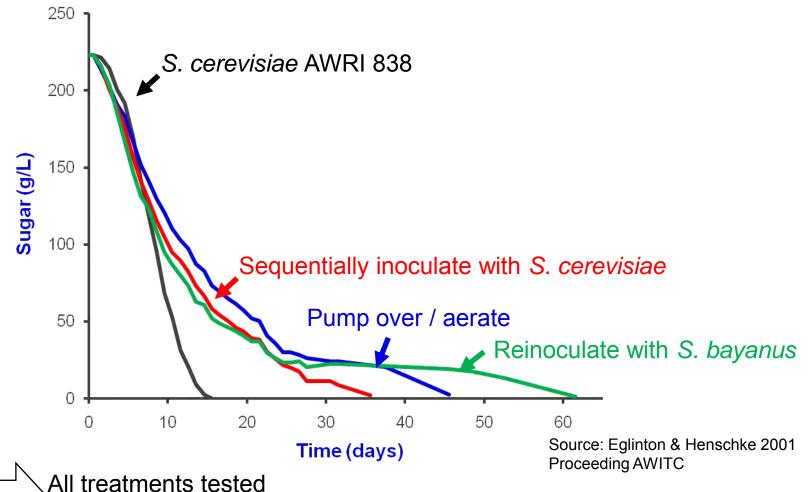

3. Minimum YAN to prevent H₂S

approx. 250 – 350 mg/L (yeast x must dependent)

- 4. Optimum flavour formation (YAN & DAP affects ester prodⁿ) Whites (strong style effects – complex thr' to fruity)
 - Chardonnay fruity: 250–350 mg/L; <200: complex</p>
 - Sauvignon Blanc ? mg/L
 - Reds fruity: 250–350 mg/L ; <200: complex</p>


Fermentation response to O₂

Combined effect of DAP + O_2 on fermentation Nutrient strategy for stimulating fermentation



Practical strategies for ensuring a complete fermentation with low vigour yeasts eg S. bayanus AWRI 1375

The Australian Wine Research Institute

promoted refermentation and had no signif. sensory affects

N.B. Rescue cultures were prepared by AWRI step-wise acclimatisation procedure Juice Clarification affects Fermentation Rate and Wine Residual Sugar

The Australian Wine Research Institute

Ferment rate	Wine residual sugar tu	Clarification treatment bidity	
Highest	est Lowest Cold settled		
		Bentonite treated and settled Enzyme treated and settled Centrifugation, 10 min at 1500g Coarse filtration Centrifugation, 20 min at 10000g	
Lowest	∨ Highest	Fine filtration (eg Sietz EK)	

High clarity enhances varietal character BUT increases fermentation risk Therefore, turbidity is adjusted to balance yeast performance and flavour

Ethanol – probably largest cause of stuck ferments

- inhibition is strain dependent: growth at 8-12%, fermentation at 12-16%
- determined by grape maturity at harvest
- ✤ SO₂
 - strain dependent inhibition, typically >10 mg/L free SO₂ at pH 3.5
 - cell death at 45 mg SO₂/L at pH 3.5 (0.8 mg/L mol. SO₂)
- Fatty acids (FAs) (good hygiene / aerate ferments)
 - acetic acid: yeast growth inhibited at >1.5 g/L at 8% EtOH fermentation inhibited at 3-4 g/L
 - aliphatics (C6, C8, C10 FAs): ca. >3 mg/L at 10% EtOH
- Toxins (low risk except for lactic acid bacteria infection)
 - yeast toxins most active in low solids (bright) ferments
 - Do not coinoculate non-killer with killer wine yeast
 - some Lactobacillus toxins can inhibit ferm. (high or low solids) check microscopically for lactic acid bacteria
- Agrochemical residues (very uncommon)
 copper oxychloride 10-15 mg/L
 Residues of winery sanitisers (uncommon)
 Yeast hulls can be used as a broad spectrum detoxification additive Procs pp.

30-38,41

Temperature stress

Do not commence cooling until 10% sugar fermented Excessive temperature (32-35 °C depend on [EtOH]) can inactivate yeast Over-cooling for particular yeast (non-cryophilic) / may need to use methods to maintain yeast in suspension if T<13-15 °C Excess heating or cooling (transition exceeding 5 °C) Cooling preferably should be <3 °C per day to avoid yeast stress during growth

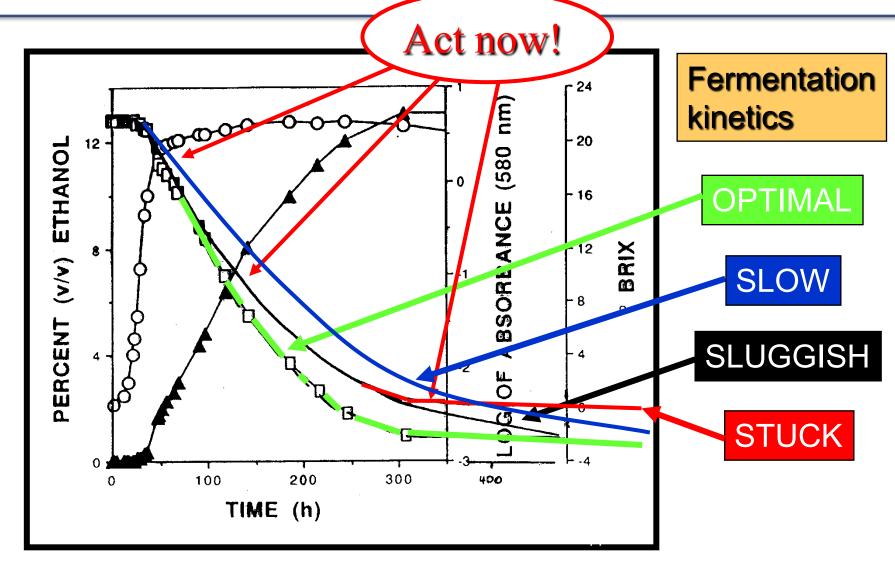
Vigour and sedimentation (flocculation)

Yeast sediments in low vigour ferments (CO_2 bubbles keep yeast in suspension and assists ferment circulation) Physical stirring can help prevent sedimentation Avoid flocculating strains in cool, cellar bright, anaerobic, high sugar ferments

Grape solids – avoid over-clarification

Beneficial to wine style but deprives yeast of key nutrients Lipids increase yeast tolerance to ethanol stress – consider adding coldsettlings to increase turbidity

Nutrients


If known or suspected lack of nutrients (especially YAN and O2) recommend aeration (ca. 5 ppm O_2) and adding 300 mg/l DAP at 30-50% fermentation progress; yeast hulls and proprietary ferment nutrients can be beneficial

Henschke (1997) ASVO Seminar pp. 30-38,41

Problem fermentations

The Australian Wine Research Institute

Take corrective action early

If ferment stops with <10 g/L residual sugar and the alcohol content is <12 % v/v:

- Then recommend preparing a starter culture in grape juice with a recommended yeast. This procedure is relatively quick and will produce moderate tolerance to alcohol / fresh yeast sediments from active ferments can also prove successful
- Otherwise use a rescue culture prepared by stepwise acclimatisation of a recommended rescue yeast. This procedure builds tolerance to the toxic substances present in the problem ferment

- Use high yeast rate 500 mg/L (EC1118, PDM, Uvaferm 43 are successful consult yeast supplier)
- Rehydrate with sterol-rich reactivation nutrient
- Don't let culture run dry go onto next stage when 50% of sugar has gone (monitor with hydrometry)
- Add DAP/Yeast hulls and aerate once culture is active
- Treatment of stuck wine before adding rescue culture:
 - Measure YAN and add DAP if necessary
 - Adding yeast hulls/ferment nutrients can be beneficial
 - If bacteria present treat stuck wine with SO₂
 - Rack or centrifuge stuck wine (remove dead yeast)
- Add wine to culture, rather than culture to wine
- Avoid temperature shock / Keep yeast in suspension
- Limited aeration beneficial only when yeast are active
- Keep good records

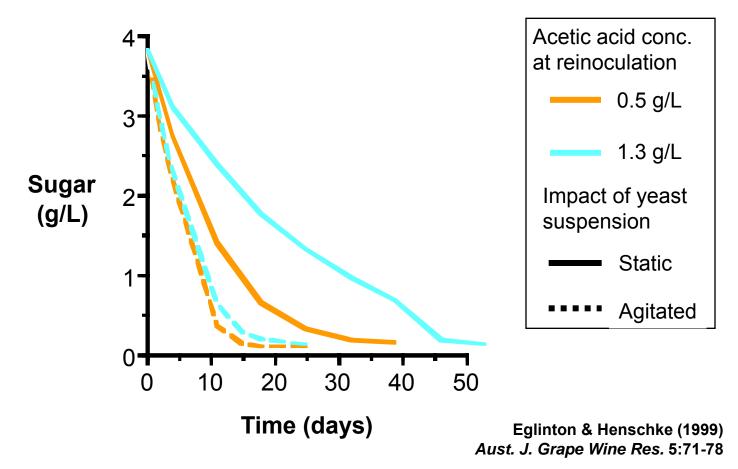
Yeast acclimatisation procedure for restarting difficult and stuck ferments (See AWRI Website for details)

The Australian Wine Research Institute

Procedure for 1000 L of ferment

Stage	Function		Cumulative volume
1	Preparation of	rescue culture	20 L
2	Acclimatisatio		
	Step	Proportion of ferment	
	1	50%	40 L
	2	75%	80 L
	3	88%	160 L
	4	94%	320 L
3	Inoculate prot	olem ferment	1020 L

Adapted from Henschke (1997) ASVO Seminar Procs pp. 30-38,41



- Stepwise acclimatisation of yeast to toxic substances of the problem ferment – if possible, incrementally add the ferment to the culture rather than the culture to the ferment
- No sugar depletion stress
- No nitrogen depletion stress
- Aeration yeast during acclimatisation procedure
- Keep yeast in suspension agitation prevents nutrient starvation stress

Agitation aids refermentation

The Australian Wine Research Institute

>>> When restarting fermentation, important to keep yeast in suspension by physical means until CO_2 production commences, which then maintains yeast in suspension

For more information

- AWRI website wealth of practical information
- ASVO seminar proceeding (1997) papers by: Henschke, Monk & Four industry practitioners
- Industry Services Group ; AWRI Technical Note 05 (updated 2013)
- Contact AWRI Industry Development & Support team: Con Simos, Adrian
 Coulter, Geoff Cowey, Matthew Holdstock for technical advice

Acknowledgments

Peter Leske (former AWRI team leader)/Peter Godden (IA Team)

Wine Microbiology team:

Simon Schmidt, Radka Kalouchova, Paul Chambers , Paul Henschke

(former members: Jeff Eglinton, Holger Gockowiak, Nancy Davis and Lisa Buckingham)

Research at The AWRI is supported by Australia's grapegrowers and winemakers through their investment agency the Grape and Wine Research and Development Corporation, with matching funds from the Australian Government.

The Australian Wine Research Institute

How to reduce your carbon footprint without spending any money

Neil Scrimgeour Research Manager, Commercial Services

Australia's impact on the global carbon economy

Australia 4.2 x 😑

The average Australian has contributed over 560 tonnes of energy-related CO₂ to the atmosphere.

Annual CO₂ emissions per person

7 = 18.7 tonnes

USA 4.1 x

The average American has contributed over 842 tonnes of energy-related CO₂ to the atmosphere.

Annual CO2 emissions per person

💎 = 18.6 tonnes

China 1.2 x ⊖

The average Chinese person has contibuted over 84 tonnes of energy-related CO₂ to the atmosphere.

Annual CO2 emissions per person

V = 5.4 tonnes

Pacific Island 0.06 x 🖨

The average person from Kiribati has contibuted 12 tonnes of energy-related CO₂ to the atmosphere.

Annual CO₂ emissions per person = 0.3 tonnes

Developed World 2.5 x 😑

The average person in the developed world has contributed over 534 tonnes of energy-related CO₂ to the atmosphere.

Annual CO₂ emissions per person = 11.1 tonnes

Developing World 0.6 x 👄

The average peson in the developing world has contributed over 56 tonnes of energy-related CO₂ to the atmosphere.

Annual CO₂ emissions per person = 2.9 tonnes

Global Average 1 x

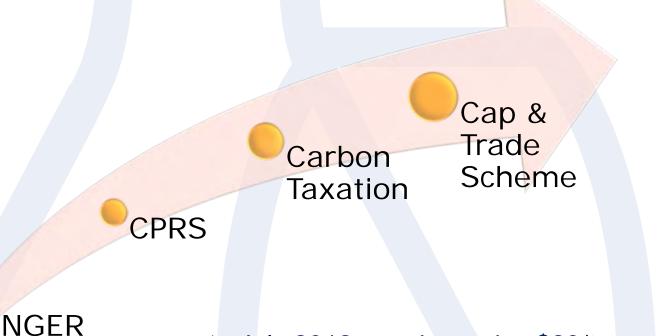
The average person worldwide has contributed 148 tonnes of energyrelated CO₂ to the atmosphere.

Annual CO2 emissions per person

V = 4.5 tonnes

Global Target 2050 0.2 x 🔵

The annual target of CO₂ emissions per person worldwide by 2050.


Annual CO₂ emissions per person

<2% of global GHG

- Export 2-3x annual emissions in coal
- 30% of global budget in Aust. coal

Carbon pricing



Australian Government Department of Climate Change

- July 2012 carbon price \$23/tonne
- July 2014 market determined price
- Excludes transport fuels
- Mandatory >25,000 tonnes/year

BUT....

Clean Energy Future Act

Carbon Pricing Machaniam Financii Aus**Industry**

About us»

Home

Home

YOU ARE HERE:

BUILDING BUSINESS · POWERING PRODUCTIVITY

Media»

Clean Technology

Programs»

Programs

– Rene	Ś
--------	---

- Clean T
- Carbon
- Land Se

Carbo

Clean Technology Food and Foundries Investment Program Program Information Eligibility Application Process **Funding Agreement Resource** Centre Customer Stories and News Grant Recipients Recent Announcements Information Publication Scheme

Clean Technology Food and Foundries Investment Program

Innovation Australia»

Program status

Open for Applications.

Note:

The Australian Government, as part of the commitment to deliver savings by abolishing the Carbon Tax, announced its intention to discontinue funding for the Clean Technology Program which it expects will generate \$0.4 billion in budgetary savings. This includes the three program components: the Clean Technology Investment Program, the Clean Technology Food and Foundries Investment Program, and the Clean Technology Innovation Program (Media Release: Our Plan to get the Budget under Control, 28 August 2013).

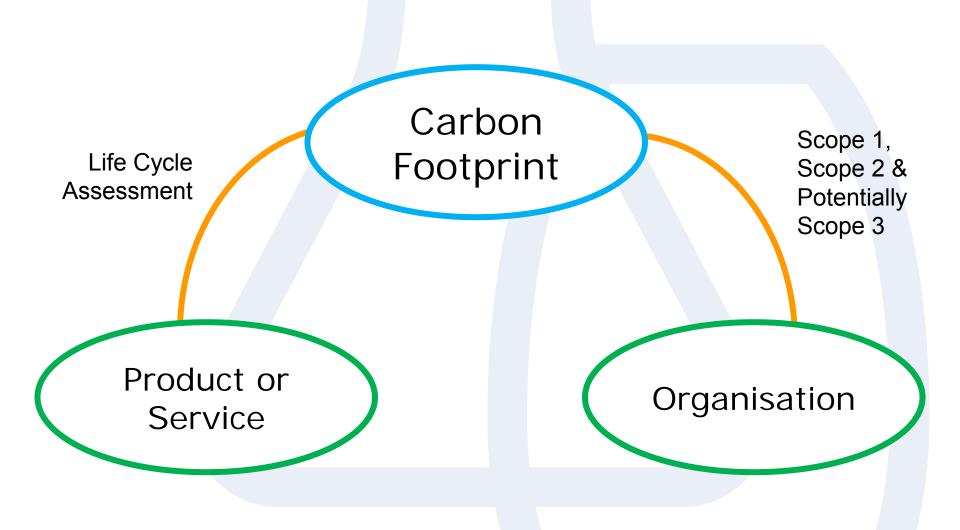
Ministers

Clean Technology Food and Foundries Investment Program

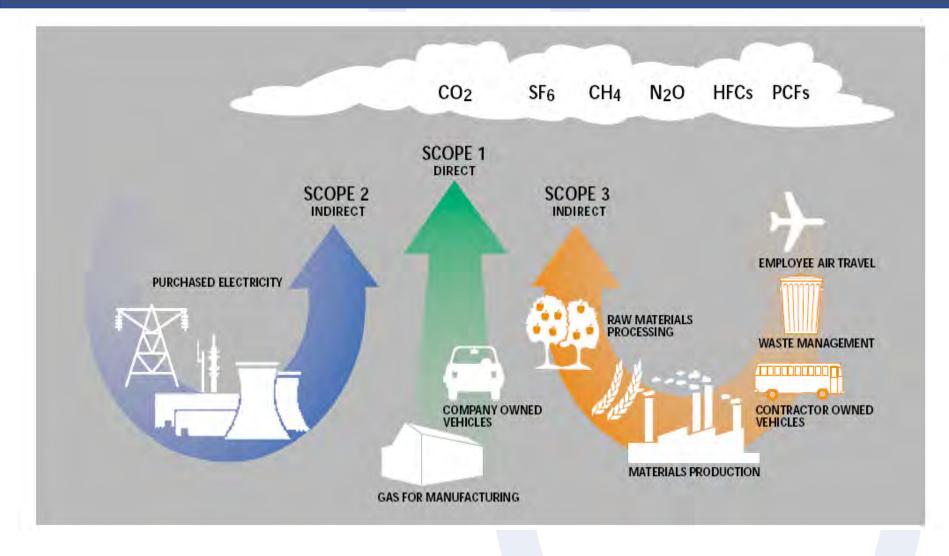
Contact us»

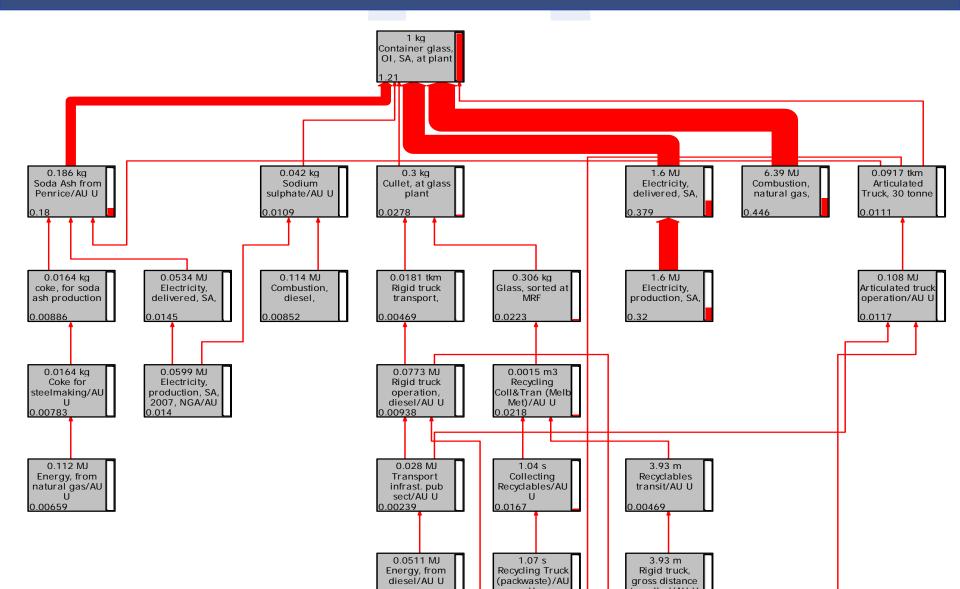
Program arrangements are currently being decided by the government. Further information will be posted on this website shortly. All applicants will be contacted by AusIndustry as soon as possible.

Listen


Business interests

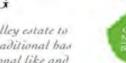
- Risk management
 - Cost of business inputs
 - Retail pressure
- Branding
 - Recognition
 - Image
 - Product differentiation
- Process improvement
 - Cost reductions
 - Grants





Organisational foot-printing

Lifecycle analysis



Supply chain impacts

28%

GRAPE GROWING & WINEMAKING

Since 1969 our Clare Valley estate to bas been based around traditional bas but based around traditional like and

TRANSPORT & SALES

Since 1969 our Clare Valley estate to

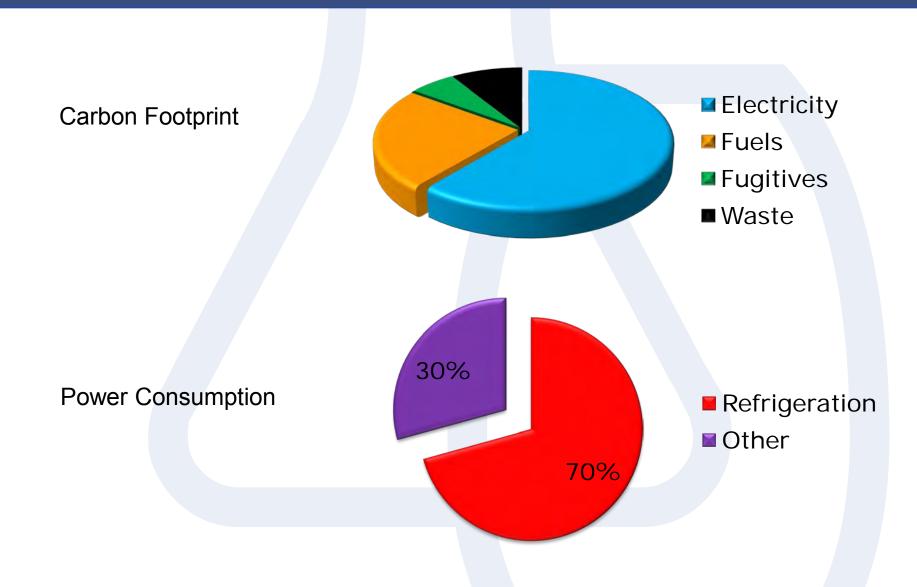
bas been based around traditional bas

but based around traditional like and

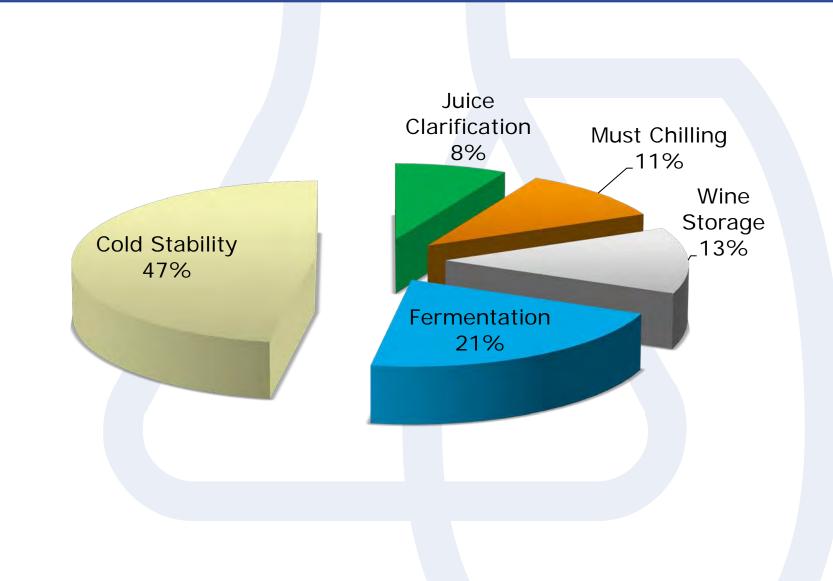
PRODUCTION & PACKAGING

Since 1969 our Clare Valley estate to bas been hased around traditional bas but based around traditional like and

CONSUMPTION & DISPOSAL


Since 1969 our Clare Valley estate to bas been based around traditional bas but based around traditional like and

18%

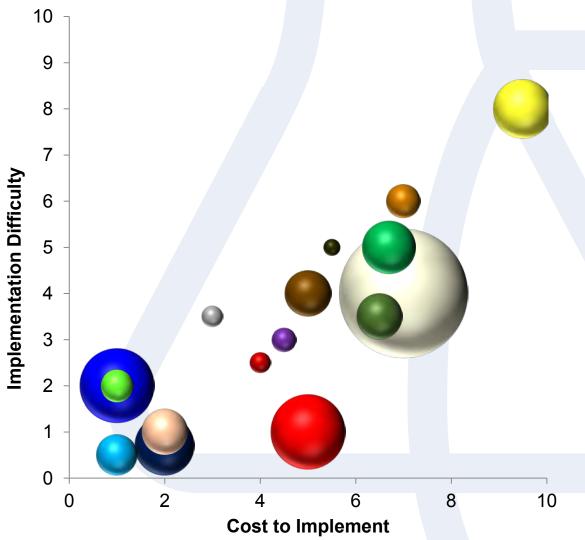


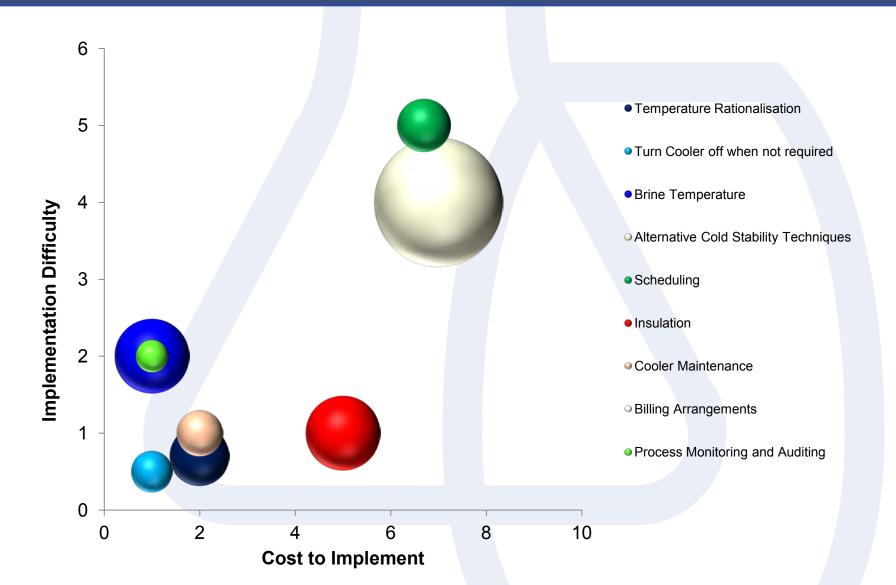
Power Consumption

Cooling Requirements

Refrigeration Handbook

www.awri.com.au



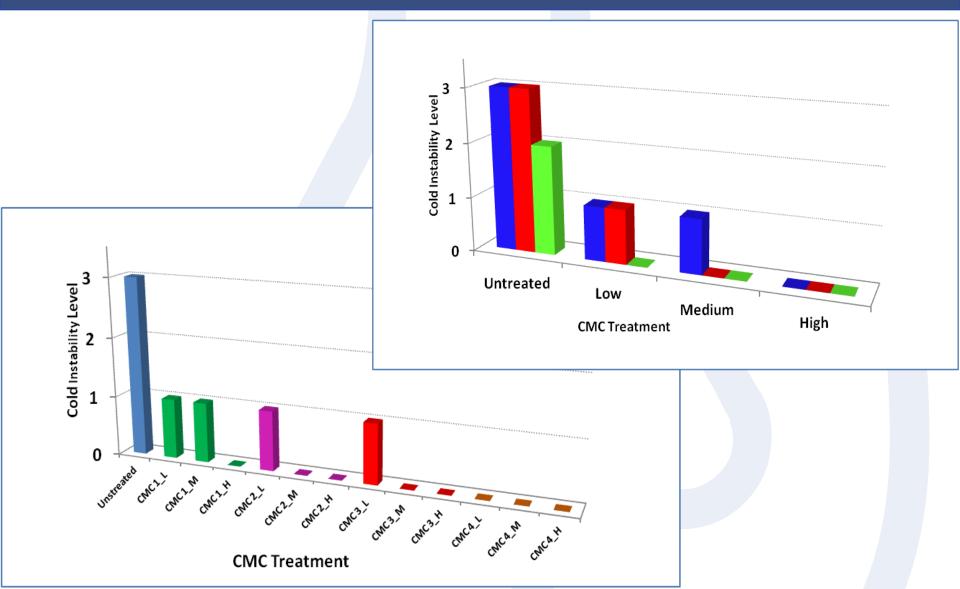

Refrigeration opportunities

- Temperature Rationalisation
- Turn Cooler off when not required
- Fermentation Temperature
- Night time over cooling
- Brine Temperature
- Separation of Brine Tanks
- Direct Expansion Refrigeration
- Temperature Stratification Reduction
- Alternative Cold Stability Techniques
- Scheduling
- Jacketing V Heat Exchangers
- Process Control
- Insulation
- Heat Recovery
- Cooler Maintenance
- Billing Arrangements
- Process Monitoring and Auditing

Refrigeration opportunities

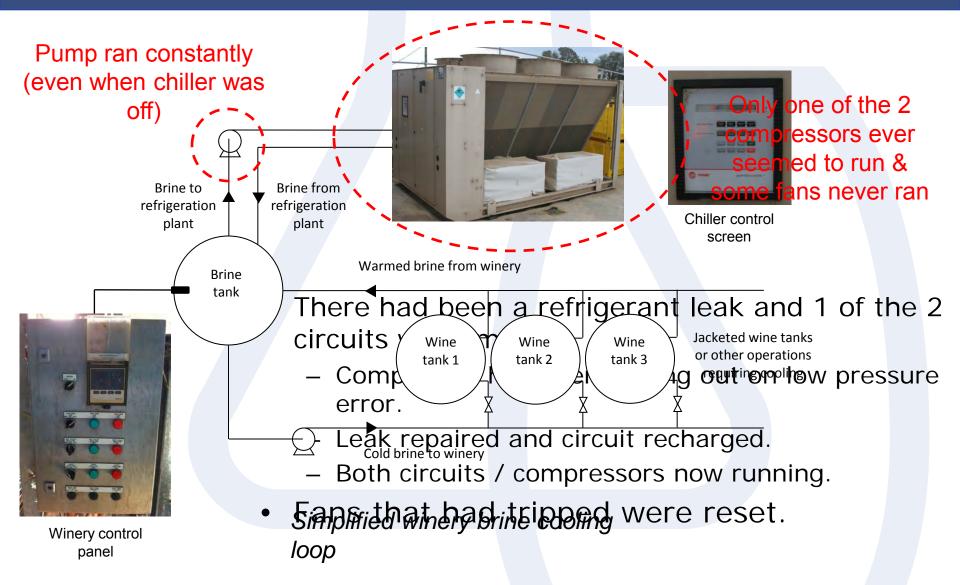
Alternative options for tartrate stabilisation

- Elimination/reduction of precursor compounds (e.g. potassium, bitartrate):
 - Traditional slow cold stabilisation
 - Rapid contact stabilisation
 - Batch
 - Continuous
 - Ion-exchange
 - Membrane processes
 - Nanofiltration
 - Electrodialysis
- Crystallisation inhibitors:
 - Metatartaric acid
 - Yeast mannoproteins
 - Carboxymethylcellulose (CMC)

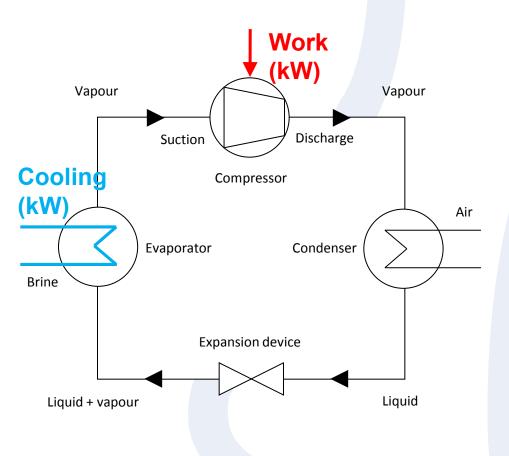


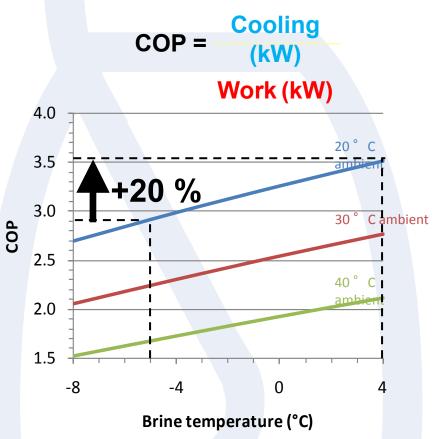
Electrodialysis: comparing performance

	Electrodialysis	Cold Technique
Wine Stability	Fail - Level 1	Fail - Level 1
Volume of Wine Processed	29,100	29,100
Performance Metrics		
Power Consumption (kWh)	77	2,968
Water Consumption (L)	7,683	3,606
Wastewater (L)	7,683	1,581
Waste Water Composition		
K mg/L (from water measurements)	1,170	-
K mg/L (from wine metal analysis)	1,251	4,381
K Load on treatment Centre (kg)	5.2	7
Na mg/L (from water measurements)	112	-
Na mg/L (from wine metal analysis)	42	42
Wine Potassium Content (mg/L)	395	335
Wine Losses (L)	136	424
Labour Requirements (hrs)	17	9
Time Taken to process wine (hrs)	17	384
Sensory Results	Not signific	antly different



Carboxymethylcellulose (CMC)




Process Auditing/Maintenance

Brine Temperature

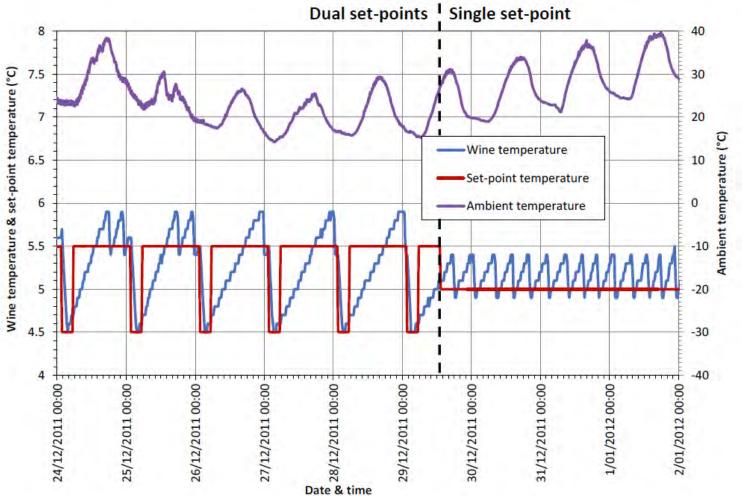
Brine Temperature

Process / Activity	Brine Set-Point	Refrigeration COP
Must Chilling / Juice Chilling	-3 °C	2.1
Fermentation	+2 °C	2.4
Cold Stabilisation	-7°C	1.8
Wine Storage (winter)	+2 °C	2.5
Bottling	-3°C	2.1

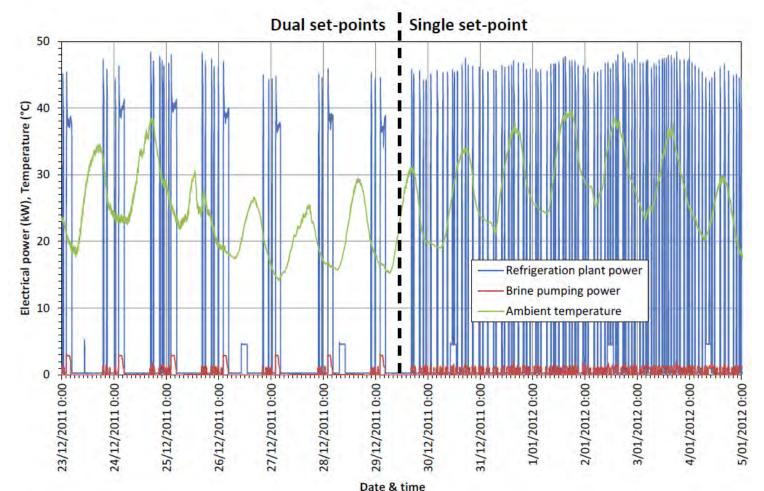
Problem operations for warmer brine temperatures (must/juice/wine temperature is getting close to the brine temperature):

Alternatives

- Must chilling Night-time harvesting / Dedicated refrigeration system
- Flotation • Juice settling
- Cold stabilisation
- Electrodialysis, packaged rapid contact systems,
- crystallisation inhibitors (CMC, Mannoproteins, etc.)
- Use as high a brine temperature as practicable for as long as practicable.
- Schedule operations that require low brine temperatures concurrently so can keep brine warmer the rest of the time.


Night-time/off-peak cooling

- Advantages:
 - Use cheaper off-peak electricity (often much cheaper).
 - Refrigeration plant may operate more efficiently at night when it is colder.
 - Depends on whether control systems are in place that allow the refrigeration plant discharge (head) pressure to reduce (i.e. float) when the ambient temperature is lower.
 - Low risk:
 - Wine is still being stored at essentially the same temperature.


Trial with dual set-point strategy

Influence of dual set-point strategy on actual wine tank temperature:

 Electrical power monitoring showing shift of operation to predominantly at night with dual set-points:

Summary

- Carbon pricing mechanism for industry in state of flux
- Winery emissions dominated by energy use
- Reducing energy use makes good business sense
- Many strategies to reduce energy use <u>without</u> spending much money

Improving Winery Refrigeration Efficiency Winery A Case study report

Warmer brine temperatures

- Cooling system operation and control systems
- Cooling system maintenance
- Plant shutdown/infrequent running
- External heat exchangers

http://www.awri.com.au/commercial_services/ process-optimisation/refrigeration/

The Australian Wine Research Institute

Thank you

Simon Nordestgaard Karl Forsyth Eric Wilkes Vince O'Brien

Information and online tools available on the AWRI website

www.awri.com.au

The Australian Wine **Research Institute**

Supporting Australian grape and wine producers

Home

Con

About Us Research & Development Industry Support and Education

Commercial Services

Information Services

Our People & Employm

Grape and wine composition

Grape and wine production

Smart technologies

Wine microorganism culture collection

AWRI-Microbial Metabolomics

Research and Development

Science and technology working for grape and wine producers

New resources navigation

The Australian Wine Research Institute

Resources for vineyards Information on agrochemicals and related analytical services, advice and support, fact sheets and more.

Resources for wineries Includes permitted additives, winemaking calculators, laboratory setup and method, Frequently Asked Questions, and products and suppliers.

Resources for wine exporters Information for exporters such as factsheets and publications, analytical services and more.

Resources for consumers

Factsheets and publications, library resources, links to other websites, research projects and wine and health

Sign up for new website account

The Australian Wine Research Institute

Resources for vineyards Information on agrochemicals and related analytical services, advice and support, fact sheets and more.

Member Login	
User Name	
	-
forgotten your passy ord 🖡 sig	in up 🦰
	-
Subscribe to eNews	6.
Subscribe to eNews and eBulletins	
and eBulletins	

Username	Enter account details
E-mail	
First Name	s library sites, nd
Last Name	AWRI will verify account requests.
Company Name	 All approved requests will be activated.
Category choose a category choose a category	A confirmation email including password will be sent to the requester.
Levy payer (Australian winery or grapegrower) Industry body (GWRDC, AWBC, WFA, State/Regional industry body, etc.) Australian research organisation or university Student (Australian resident) Student (overseas) Journalist Consultant (winemaking, Australian resident) Consultant (viticulture, Australian resident)	Some sections can only be accessed via username / password.

Regulatory Assistance

The Australian Wine Research Institute

4.0 g/L

12.0 g/L

45.0 g/L

_ 12.0 g/L

17.0 g/L

32.0 g/L

50.0 g/L

4.1 g/L

12.1 g/L

45.1 g/l

12.1 g/L

17.1 g/l

32.1 g/L

50.1 g/l

16 g/L

17 g/L

About Us	Research & Development	Industry Support and Education
----------	------------------------	--------------------------------

Commercial Services Information Services Our People & Employment

 Courses, seminars & workshops 		1 1158		iew requirem	ents by cou	intry		
► Environment		-		hina isplay				
 Online videos 		P	Vi	iew requirem	ents by cer	tificate		
 Regulatory assistance 	AWRI Education & Industry Support		-	please choose		•		
Analytical requirements for the export of Australian wine	Industry Support and Education > Regulatory assistance		di	isplay				
Additives & processing aids	Regulatory assistance		Vi	iew requirem	ents by ana	alytical parame	eter	
Wine standards	Analytical requirements for the export of Australian wine Wine standards			please choose splay				
 Viticulture 	<u>Additives & processing aids</u>							
 Wine and health 	The AWRI provides regulatory and technical advice to the Australian grape and wine the Managing Director, the <u>Health and Regulatory Information Manager</u> and membe	Industry Sup	oport and Educ	<u>ation</u> > <u>Regulatory assi</u>	<u>stance</u> > Analytical re	quirements for the export	of Australian wine	
 Winemaking advice and problem solving 	Industry Development and Support team. The AWRI handles approximately 150 ind information requests annually, on technical, scientific and regulatory issues from go producers and the general public. The AWRI also prepares numerous position papers	Analyti _{China}	cal requ	irements for	the export o	f Australian wir	ne	
 Winemaking resources 	submissions in relation to viticulture and oenological practices.		to Export Re	-				
WIC Winemaking Services	The AWRI is represented on the following committees of relevance to regulatory mat South Australian Wine Industry Council; 	Export Region China	Wine Standard Y	Minimum s Specification Y	Maximum Specification Y	Continuing Approval Application Y	Certificate of Origin Y	Other Requirements Certificate of Free Sale
Member Login	 The Winemaker's Federation of Australia Wine Industry Technical and Advisory Co The Winemaker's Federation of Australia Wine Industry National Environment Corr 	Standards						
Welcome, Linda Bevin	Wine Committee of the Royal Agricultural and Horticultural Society of South Austra							ICATION
	 Organisation Internationale de la Vigne et du Vin (OIV) 		AL PARAMET				MINIMUM	MAXIMUM
log out	The AMPT/s Likes with a John Company of a Managinal Likes of an interview to the		rength at 20°	'С			7.0 % v/v	-
	The <u>AWRI's Library</u> (the John Fornachon Memorial Library) maintains the largest coll	wines [∆]					7.0 % V/V	-
	related literature in the southern hemisphere. It also houses an extensive print college	Total cuga	r (alucoco)					

Still

Dry wines[†]

Semi-dry#

Sweet Sparkling

Brut[‡]

Extra-dry[‡] Dry

Semi-dry

Dry extract White

Sweet

Rosé

Semi-sweet

Subscribe to eNews

related literature in the southern hemisphere. It also houses an extensive print colle European Union wine and grape legislation (updated weekly) which is linked electror

Searchable databases on permitted additives and processing aids, and export analytical requirements

Winemaking calculators

The Australian Wine Research Institute

- Acid addition
- · Ascorbic acid addition
- · Bentonite addition
- <u>Carbon addition</u>
- · Copper sulfate addition
- Crème of Tartar addition
- Deacidification
- Diammonium phosphate additions
- Ferro Cyanide trial
- Fining trial
- Fortification
- Gelatine addition
- · General conversion calculators
- · Grape juice concentrate (GJC) addition using Pearson Square
- Hydrogen peroxide addition
- · Interconversion of acidity units
 - Acetic acid
 - Citric acid
 - Lactic acid
 - Malic acid
 - Sulfuric acid
 - Tartaric acid
 - Tartaric acid (meg/L)
- Isinglass addition
- Laboratory stock solution
- Methanol expressed as proportion of ethanol calculator
- Micro-ox addition
- · Molecular sulfur dioxide addition
- Number of standard drinks
- · Paired preference
- PMS addition
- PVPP addition
- Same/Different
- Sensory difference test
 - Duo-trio
 - Paired comparison
 - Triangle
- Sorbic acid addition
- Sulfur dioxide addition
- Tannin addition
- · Winery stock solution

Industry Support and Education > Winemaking resources > Winemaking calculators > Number of standard drinks

Number of standard drinks

Suggestions / questions / comments? email the calculator services staff

Approximate standard drinks

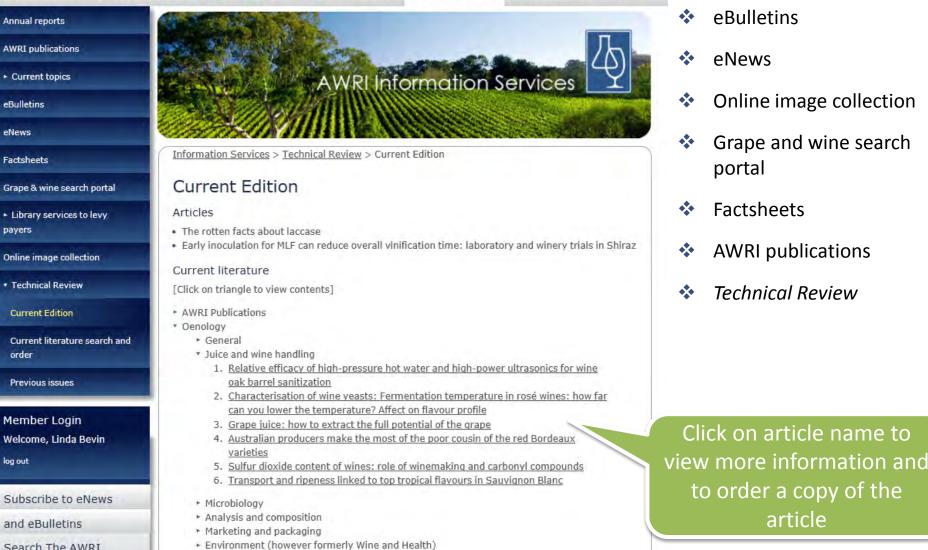
Container volume	750	mL
Alcohol content	14.5	% v/v
Calculate number of standard drinks	8.6	standard drinks

Calculate number of standard drinks

Clear

Information Services

About Us

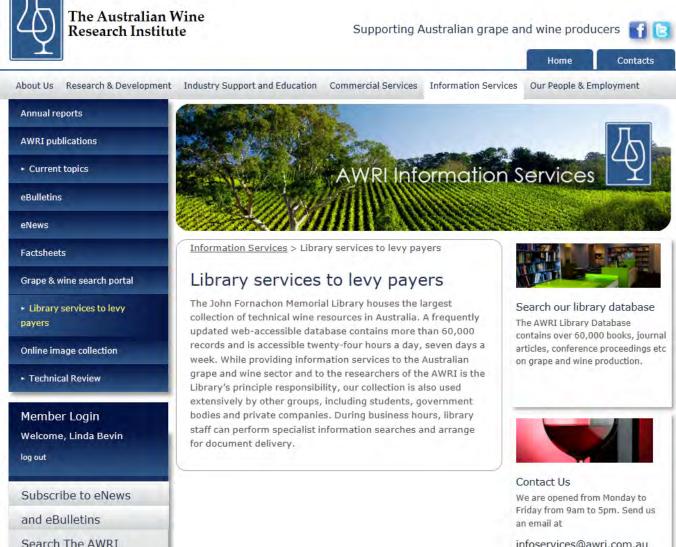

Search The AWRI

Website

Research & Development Industry Support and Education Commercial Services

Sensory (formerly Environmental Health)

Information Services Our People & Employment



Library Services

Website

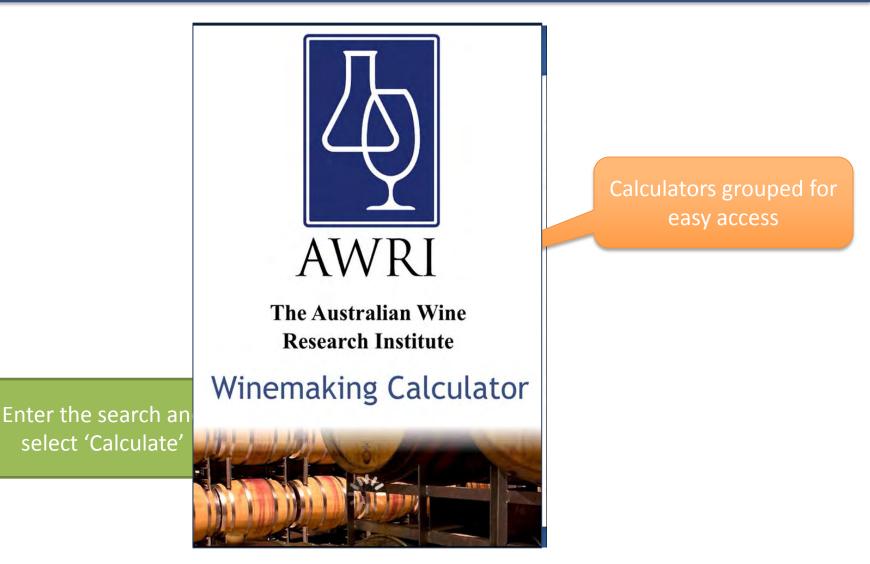
The Australian Wine Research Institute

infoservices@awri.com.au or call us on 08 8313 6600

- Free library service to Australian grape and wine producers
- Over 65,000 books, journal articles, conference proceedings etc
 - Online library database
- Fast response time (1 to 3 days)

Mobile website

The Australian Wine Research Institute


Mobile-friendly website launched in October 2012.

Provides content to key projects and services offered by the AWRI.

Linked to full website for detailed information.

Winemaking calculator app

http://www.awri.com.au/industry_support/winemaking_resources/winemaking-calculators-app/

The Australian Wine Research Institute

	Presentation	Description	Presenter	Date	Register
am since ninar from outer with	Optimising your laboratory for the best results	Laboratories are a critical, and often expensive, part of modern wine production. This webinar will highlight a number of areas that are important to not only ensure results are accurate, but to achieve them in an efficient and cost effective manner. Some of the topics that will be discussed include basic lab quality systems; LIMS; lab design; lean systems and troubleshooting common laboratory issues.	Eric Wilkes (The AWRI)	23/07/2013	Register
s ing of 20 Omin Q&A	Strategies for reducing alcohol levels in wine	The AWRI has taken a holistic approach to the development of strategies for the reduction of alcohol concentration in wine. Several viticultural and fermentation practices show considerable promise for the production of good quality reduced- alcohol wines. This session will present our latest findings and point to the need to evaluate a combinatorial approach to reducing alcohol concentration in wine.	Cristian Varela (The AWRI)	30/07/2013	Register
tures 23 try_support/c /webinars/	The latest on CMCs	Carboxymethylcellulose is becoming an important part of the winemaker's tool box for white wine tartrate stabilisation. However, like all wine additives, there is more to the successful use of CMCs than sales brochures might suggest. This webinar will look at how CMC works; when it is appropriate to use; what precautions you need to take and the best ways to test the wine when using it.	Eric Wilkes (The AWRI)	6/08/2013	Register
	Till death do us part: Cell death in the grape berry as a quality measure	ТВА	Steve Tyerman (The University of Adelaide)	20/08/2013	Register
	Climate influence and trends for the wine industry	ТВА	Darren Ray (Bureau of Meteorology)	27/08/2013	Register

Annual webinar program since 2011

Participate in a live seminar from your desk using a computer with Internet access

Weekly session consisting of 20 min presentation and 20min Q&A

The 2013 Program features 23 webinars

http://www.awri.com.au/industry_support/c ourses-seminars-workshops/webinars/

2013 webinar program

australian grape & wine events calendar

event search	events calendar locations events members log-in contact us
Date	Event
14 May 2013	AWRI Hunter Valley Seminar Mercure Resort Hunter Valley, Pokolbin NSW
14 May 2013	<u>New Technologies in Grapegrowing and Winemaking</u> Treasury Wine Estates vineyards, Padthaway SA
15 May 2013	AWRI Barossa Adapting to difficult vintages workshop Vine Inn, Nuriootpa SA
21 May 2013	AWRI Clare Adapting to difficult vintages workshop The Artisan Table, Clare SA
21 May 2013	AWRI Langhorne Creek and Adelaide Hills Seminar Langhorne Creek Football Clubrooms, Langhorne Creek SA
22 May 2013	Regional Smoke Taint Update Gum San Chinese Heritage Centre, Ararat VIC
23 May 2013	<u>GWRDC #INseries workshop - China Insights: McLaren Vale</u>
23 May 2013	Regional Smoke Taint Update Yarra Glen Memorial Hall, Yarra Glen VIC
24 May 2013	<u>GWRDC #INseries workshop - China Insights: Barossa</u>
24 May 2013	Regional Smoke Taint Update Oxley Shire Hall, Oxley VIC
27 May 2013	<u>GWRDC #INseries workshop - China Insights: Hunter Valley</u>
28 May 2013	<u>GWRDC #INseries workshop - China Insights: Yarra Valley</u>
30 May 2013	<u>GWRDC #INseries workshop - China Insights: Margaret River</u>
30 May 2013	Margaret River Wine in Sydney The Barnet Long Poom, Customs House, Circular Ouay NSW

Complete the survey & access presentations online

The Australian Wine Research Institute

4 Thank you for your participation Complete online at today's Seminar! AWRI feedback (link in email) Your feedback is important to us! Complete the online feedback form here. This will take less than 2 minutes to complete. **Redirected to AWRI** Website Member Login **Instructions will** User Name Log in be emailed forgotten your password | sign up after today's seminar Save to USB

Thank you for your participation today!