A W R I

Capturing the pepper character in Shiraz

Leigh Francis Tracey Siebert Sheridan Barter Markus Herderich Mark Solomon Gerard Logan (University of Auckland)

NEW ZEALAND

Gas chromatography-mass spectrometry

(-)-Rotundone

By GC-MS-O, rotundone was established as the principal aroma impact compound for pepper

aroma in grapes and wine.

- Identity confirmed with reference Cyperman Rev DAd Say muse ass weed
- ¹H and ¹³C NMR, ORD
- GC-MS-O. co-injections

Wood, C.; Siebert, T. E.; Parker, M. et al. J. Agric. Food Chem. 2008, 56, 3738-3744 Siebert, T. E. et al. J. Agric. Food Chem. 2008, 56, 3745-3748

How potent is rotundone?

The Australian Wine Research Institute

aroma detection threshold

8 ng/L in water

16 ng/L in red wine

20 to 25% of the panellists were anosmic to rotundone

Wood, C.; Siebert, T. E.; Parker, M. et al. J. Agric. Food Chem. 2008, 56, 3738-3744

Aroma detection threshold of the black pepper compound Rotundone, in red wine, is 16 ng/L

Rotundone in Australian wines

Rotundone in other commercially available Shiraz wines

	Barossa Valley	/ Shiraz	Margaret River	Shiraz	-
Compound	concentration $(\mu g/L)^b$	OAV ^c	concentration $(\mu g/L)^+$	OAV	
acetic acid	680000	3.4	510000	2.6	-
ethyl lactate	366500	2.4	247250	1.6	
ethyl acetate	164400	13.4	103100	8.4	
3-methyl butanol	161250	5.4	208400	6.9	
2-methyl butanol	40150	<1	76000	1.2	
2-methyl propanol	26750	<1	56200	1.4	
2-phenyl ethanol	26350	1.9	56450	4.0	
methionol	2018	2.0	3061	3.1	
hexanoic acid	1840	4.4	1900	4.5	
ocatanoic acid	1480	3.0	1680	3.4	
3-methylbutyl acetate	508	17.0	465	15.5	AGR
3-methylbutanoic acid	438	13.0	946	28.3	FOO
butvric acid	433	2.5	174	1.0	Chara
ethyl octanoate	378	76.0	439	87.8	Quant
ethyl hexanoate	369	26.0	391	27.9	and I. Le
2-methylbutanoic acid	335	10.0	907	27.5	The Austra
<i>cis</i> -oak lactone	313	13.0	243	10.0	ABSTR/ Margaret
ethyl butanoate	305	15.0	234	11.7	cómpóu dimethyl cóncentr
vanillin	301	15.0	149	<pre>11.7 </pre>	
ethyl-2-methyl	207	14.0	353	23.5	
dimethyl sulfide	120	12.0	27	27	
ethyl 3 methyl	150	13.0	57	5.7	
butanoate	54	18.0	100	33.3	
4-ethylphenol	45	3.5	11	<1	
eugenol	41	6.8	28	4.7	
ethyl 2-methyl	36	36.0	76	76.0	
butanoate	50	50.0	70	70.0	
guaiacol	35	1.5	28	1.2	
linalool	15	1.0	13	<1	
sotolon	9	1.8	3	<1	
methanethiol	2.5	1.4	1.7	<1	
β-damascenone	2.2	44.0	1.2	24.0	
hydrogen sulfide	0.6	<1	1.8	1.6	
rotundone	0.001	<1	0.038	4.0	

The Australian Wine Research Institute

AGRICULTURAL AND Artide FOOD CHEMISTRY publications(ARC
Characterization of the Key Aroma Compounds in Shiraz Wine by Quantitation, Aroma Reconstitution, and Omission Studies
Christine M. Mayr, [†] Jason P. Geue, [§] Helen E. Holt, Wes P. Pearson, David W. Jeffery, [‡] and I. Leigh Francis [‡]
The Australian Wine Research Institute, P.O. Box 197, Glen Osmond (Adelaide), South Australia 5064, Australia
ABSTRACT: The key aroma compounds of premium Australian Shine wines from the warm Barotis Valley and cooler Marguet River regions were ebancterized. GC-Olfscionetty was conducted to determine the most important volable compounds, which were the quantitated. The wine from the Barotis Valley and higher concentrations of ethyl programote, dimethyl sulfide (DMS), and calculative compounds, whereas the Marguet River wine contained above thatshold

Mayr, C.M., Geue, J.P., Holt, H.E., Pearson, W.P., Jeffery, D.W., Francis, I.L. 2014. *Journal of Agricultural and Food Chemistry 62 (20): 4528-4536.*

Rotundone variability across vintages: Canberra District

Rotundone is only present in the skin

Photograph by Eric Wilkes

Rotundone increases during late stage ripening

Rotundone increases during late stage ripening

Clone and crop load

Leaf removal

Trunk Circumference: 163mm LLN: 2.73 Gaps: 1.5%

Trunk Circumference: 129mm LLN: 0.795 Gaps: 29% Vigour

Rotundone extraction during winemaking

Rotundone extraction from berries during winemaking

Can yeast affect rotundone levels during fermentation?

Rotundone in French Pyrenees wines

Olivier Geffroy, IFV Sud-Ouest

IFV viticulture trials:	2011	20	
Irrigation / Elicitor / crop load	43-48 ng/L	29	
Control	37 ng/L	27	
Leaf removal	12 ng/L	12	

2012 29-36 ng/L 27 ng/L 12 ng/L

Variability across the vineyard Nathan Scarlett, RWG; Rob Bramley, CSIRO

2012 Rotundone concentration in grapes

• 74 - 1081 ng/kg

2014: 6-15 ng/kg

Scarlett, N.J., Bramley, R.G.V., Siebert, T.E. 2014. Within-vineyard variation in the 'pepper' compound rotundone is spatially structured and related to variation in the land underlying the vineyard. *Australian Journal of Grape and Wine Research.*

Mean January temperature is associated with rotundone concentration in wines

The Australian Wine Research Institute

Relationship between mean January temperature and the mean rotundone concentration in Shiraz wine samples from eight selected Australian wine regions. Plotted from the data of Jeffery et al. (2009) and the Australian Bureau of Meteorology. The equation to the dotted line is y = 272 - 12.1x (R² = 0.44, P = 0.075).

Within-vineyard variation in the 'pepper' compound rotundone is spatially structured and related to variation in the land underlying the vineyard Australian Journal of Grape and Wine Research Scarlett, Bramley and Siebert
<u>Volume 20, Issue 2, pages 214-222, 16 APR 2014 DOI: 10.1111/ajgw.12075</u>
<u>http://onlinelibrary.wiley.com/doi/10.1111/ajgw.12075/full#ajgw12075-fig-0005</u>

- Viticultural parameters affected rotundone levels: Picking date, clone, vigour, leaf removal & crop load
- Rotundone is a very stable compound, easily extracted from skins
- Why does rotundone occur in Shiraz more often than other varieties?
- Is temperature during berry development a major influence?

Conclusions

Acknowledgements

The Australian Wine Research Institute

- Rob Bramley, CSIRO
- Darryl Catlin, Winemaker, and the winery and laboratory staff of Shaw and Smith Wines
- Frank van de Loo, Mt Majura Vineyard
- Jim Lumbers, Lerida Estate and Lumbers Consulting
- Dr Ayalsew Zerihun, Curtin University of Technology
- Nathan Scarlett, Dan Buckle, Damien Sheehan (Mt Langi Ghiran), Allen and Andrea Hart (Treasury), Inca Pearce, Martin Wirper (Orlando), Sue Hodder (Wynns Coonawarra Estate)

AWRI

- Mango Parker, Claudia Wood, Dimitra Capone
- Flavour & Sensory Teams
- Radka Kolouchova
- The University of Auckland & EIT Hawke's Bay
- Mission Estate Wines
- Craggy Range Vineyards

THE UNIVERSITY OF AUCKLAND NEW ZEALAND

Symrise, Germany

The AWRI, a member of the Wine Innovation Cluster in Adelaide, research is financially supported by Australia's grape growers and winemakers through their investment body the Grape and Wine Research and Development Corporation, with matching funds from the Australian Government.