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A burning need: 
developing a rapid screening method for smoke-
affected grapes and wine
By Neil Scrimgeour, Kieran Hirlam, Eric Wilkes and Mango Parker, The Australian Wine Research Institute

Australian Wine Research Institute researchers have tested the use of mid-infra-red spectroscopy as a rapid 
screening tool for likely smoke exposure to grapes and wine.

DEVELOPING A RAPID SCREENING 
METHOD FOR GRAPES AND WINE

Mid-infra-red (MIR) spectroscopy is an 
analytical method with broad application for 
the measurement of chemical attributes in 
grapes, juice and wine, with testing typically 
taking less than a minute to complete. It 
was therefore considered a good candidate 
for rapid assessment of smoke-exposed 
grapes and wine. To assess the viability of 
using MIR spectroscopy for this application, 
a series of grape and wine samples were 
collected during the 2020 vintage, with some 
expected to be at high risk of impacts from 
smoke exposure and others perceived to be at 
lower risk. Each sample was assessed using 
both MIR spectroscopy and conventional 
chemical analysis (GC-MS and LC-MS) for 
free volatile phenols and glycosides. In total, 
349 grape samples and 388 wine samples 
were screened, with statistical analysis carried 
out using a number of different cloud-based 
chemometrics platforms.

Two approaches were used for the data 
analysis: 

1) development of linear regression models 
using quantitative data from the chemical 
analysis 

2)	development	of	classification	models	
using a nominal smoke risk rating of ‘low’, 
‘medium’	or	‘high’	to	define	the	extent	of	the	
impact of exposure.

In each case, the data was randomly split 
to assign 70% of the samples to a training 
set, used for model building purposes, and 
an independent holdover set comprising 
30% of the samples, used for model 
validation. Generally speaking, the absolute 
concentrations of individual smoke marker 
compounds in smoke-affected grapes and 
wines are extremely low compared to those 
of other grape and wine analytes. The sums 

of the concentrations for volatile phenols and 
glycosides were therefore chosen to model the 
impacts of smoke exposure. The concentration 
of syringol gentiobioside was also considered 
a viable option as this was the predominant 
smoke marker compound present in most of 
the grape and wine samples screened from 
vintage 2020. 

IN BRIEF 
 ■ Grapes exposed to smoke can 

result in wines with undesirable 
sensory characteristics.

 ■ The volatile phenols in smoke 
are primarily responsible for these 
characters, which can bind to sugar 
compounds in grapes to produce 
glycosides.

 ■ Glycosides can break apart and 
release volatile phenols into wine 
during fermentation and over time in 
barrel or bottle.

 ■ Testing grapes or wine for 
concentrations of volatile phenols 
and glycosides requires sophisticated 
and expensive analytical 
instrumentation, requires a relatively 
high level of technical expertise 
cannot be applied in real time.

 ■ In search of a rapid screening 
test, researchers turned to mid-
infra-red (MIR) spectroscopy which 
is already used to measure chemical 
attributes in grapes, juice and wine 
and typically takes less than a 
minute to complete. 

INTRODUCTION
The	incidence	of	uncontrolled	bushfires	

is increasing worldwide. As a result, the risk 
to grapevines from smoke exposure is an 
issue that the wine industry is progressively 
being forced to address. When grapes are 
exposed to smoke it can result in wines with 
undesirable sensory characteristics, such 
as ‘smoky’, ‘burnt’, ‘ash tray’ or ‘medicinal’, 
depending on the smoke composition and the 
length of smoke exposure.

The compounds in smoke primarily 
responsible for these attributes are the 
volatile phenols produced when wood is 
burnt. These compounds can be absorbed 
directly by grapes, leaves and stems and 
can bind to sugar compounds in grapes 
to produce glycosides that have no smoky 
aroma. During fermentation (and over time 
in barrel or bottle) these glycosides can 
break apart, releasing the volatile phenols 
into the wine. This release of volatile phenols 
can also occur in the mouth via the action 
of salivary enzymes, further contributing to 
the perception of smoke characters during 
tasting.

Testing grapes or wine for evidence 
of smoke exposure involves the use of 
sophisticated and expensive analytical 
instrumentation to separately determine the 
concentration of individual volatile phenols 
and glycosides. Interpretation of results 
requires comparison with background levels 
of these compounds in non-smoke-exposed 
grapes. The analytical methods require a 
relatively high level of technical expertise 
to administer and cannot be applied in real 
time to understand the potential risk posed 
by smoke exposure. A rapid screening test 
that could be used to determine the extent 
of impact from smoke exposure would be 
extremely valuable for the wine industry.
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Accordingly, linear regression models were 
built using three different output variables:

1) sum of volatile phenol concentrations
2) sum of glycoside concentrations
3) Concentration of syringol gentiobioside
Summary statistics for these three 

variables are provided in Table 1. 

RESULTS FROM THE LINEAR 
REGRESSION MODELS

Results generated when applying linear 
regression models to the sum of glycosides 
in grapes and wine are shown in Figure 1. 
None of the spectral models built allowed any 
of	the	three	variables	to	be	quantified	with	
a reasonable degree of accuracy in either 
grape or wine samples. Although the cross 
validation models appeared to show promise 
for quantifying the extent of smoke impact, the 
prediction error with independent (holdover) 
test samples was very high, as indicated by 
the extremely poor correlation between actual 
and predicted values for the holdover set. 

DEVELOPING CLASSIFICATION MODELS
An alternative approach considered was 

the	development	of	classification	models,	
based on the assignment of a nominal smoke 
risk rating of ’low’, ‘medium’ or ‘high’, using 
the same three analytical variables as those 
used for the linear regression models. Of 
these, the most successful models were 
based on the total glycoside concentration in 
the grape and wine samples. The range of 
concentration values assigned to the individual 
risk categories and the number of grape and 
wine samples that fell into each category are 
summarised in Table 2. 

For grape samples, the most promising 
classification	prediction	was	built	using	a	

Concentration in grapes (µg/kg) Concentration in wines (µg/L)
Syringol 

gentiobioside Sum volatiles Sum glycosides Syringol 
gentiobioside Sum volatiles Sum glycosides

minimum 0 0 0 0 0 1

maximum 1147 143 1640 689 334 999

mean 148 14 239 58 31 100

median 68 6 116 16 22 37

standard 
deviation 210 18 317 113 40 166

Table 1. Summary of concentration ranges present in smoke-affected grape and wine samples for the three variables used to build linear 
regression models

Category  
(impact level)

Range of total glycoside 
concentrations

(µg/kg for grapes and µg/L 
for wines)

No. of grape 
samples

No. of wine 
samples

Low <30 73 170

Medium 30-100 84 118

High >100 192 100

TOTAL 349 388

Table 2. Nominal smoke risk categories applied to grape and wine samples for classification 
modelling

Cross-validation data-set for total glycoside 
concentration in smoke affected grape samples

Independent (holdover) test set for total glycoside 
concentration in smoke affected grape samples

Cross-validation data-set for total glycoside 
concentration in smoke affected wine samples

Independent (holdover) test set for total glycoside 
concentration in smoke affected wine samples

Figure 1. Cross-validation and holdover test set data for linear regression models using MIR 
data to predict total glycoside concentration in smoke-affected grape and wine samples
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Gradient Boosting Machine Learning model, 
which produced a cross-validation accuracy 
of	100%	(correct	sample	classification	with	
the training set, Table 3). The independent 
validation set showed a prediction accuracy of 
71% (Table 4). 

The rate of false positive predictions 
(samples predicted as being medium or high 
risk, but actually in the low category) was 8% 
(7 samples out of 87, highlighted in orange in 
Table 4). The rate of false negative predictions 
(samples predicted as low but actually in the 
medium or high categories) was only 2% (2 
samples out of 87, highlighted in red in Table 4). 

Re-modelling was carried out using a 
reduced	sample	set,	with	a	significant	number	
of high category samples removed to provide 
a more balanced model (n = 165 [training set] 
and n = 54 [validation set]). In this case, a 
Distributed Random Forest type model was 
developed and this exhibited a 17% false 
positive prediction rate (9 samples out of 54) 
for the validation samples and, importantly, a 
0% false negative prediction rate (0 samples 
out of 54).

For wine samples, a Gradient Boosting 
Machine	Learning	classification	model	was	
again the most promising, with a cross-validation 
accuracy of 100% (Table 5) and an independent 
validation prediction accuracy of 55%. 

The rate of false positive predictions 
(samples predicted as being medium or 
high, but actually in the low category) was 
12% (12 samples out of 97, highlighted in 
orange in Table 6). The rate of false negative 
predictions (samples predicted as low but 
actually in the medium or high categories) 
was 21% (20 samples out of 97, highlighted 
in red in Table 6). 

Again, re-modelling was carried out using 
a	reduced	sample	set,	with	a	significant	
number of high category wine samples 
removed to provide a more balanced model 
(n = 225 [training set] and n = 75 [validation 
set]). The revised Gradient Boosting Machine 
Learning model exhibited a 13% false positive 
prediction rate (10 samples out of 75) for the 
validation samples and a 3% false negative 
prediction rate (2 samples out of 75).

SUMMARY
The use of MIR spectral data to classify 

potentially smoke-affected grapes as low, 
medium	or	high	risk	using	classification	
models	shows	significant	promise	as	a	rapid	
screening tool for likely smoke exposure. 

However, further work is required to better 
understand the compounds that contribute 
to false negative results. To date, it appears 
that linear regression models used to quantify 
the concentration levels of smoke marker 
compounds in grapes and wine do not 
have the required precision to be used as a 
meaningful screening tool. 

Once	refined,	classification	models	such	as	
these could be used for preliminary screening 
of grape and wine samples potentially affected 
by	smoke.	Those	samples	classified	as	
being ‘medium’ or ‘high’ risk could then be 
subjected to more detailed chemical analysis 
using existing GC-MS and LC-MS techniques. 
Those	samples	classified	as	‘low’	risk	may	not	
require further chemical analysis, especially 
if the potential risk of returning false negative 

results from the initial screening procedure 
can be  eliminated. Further development work 
is required to assess whether moving from a 
3-class model to a 2-class model (samples 
being categorised as either low or high) or 
adjustment of the low smoke impact threshold 
(currently set at 30µg/kg for the sum of 
glycosides in grapes and 30µg/L for the sum 
of	glycosides	in	wines)	will	have	beneficial	
impact on the prediction accuracy of the 
classification	models.

The	classification	models	built	for	wine	
samples showed less promise, although 
a 3% false negative prediction level was 
achieved using a reduced and more balanced 
sample set. This may be due to the relatively 
low concentrations of glycosides present in 
smoke-affected wines, compared with grapes, 
and the higher levels of volatile phenols 
present in the wine samples. It is also likely 
that other phenolic and glycosidically bound 
compounds that naturally occur in wines could 
generate interference in the spectral data and 
affect the performance of the models.

Several parallel (unpublished) studies of 
smoke taint screening have suggested that 
other analytical methods may have some 
utility in the detection of smoke-related 
compounds in grapes and wines, although 
none as yet appear to provide a robust 
solution for rapid screening. Ultimately, a 
combination of methods may be required 
to	provide	a	high	degree	of	confidence	for	
preliminary screening of samples. 
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Table 6. Holdover (validation set) predicted vs 
actual for wines, n=97

Pr
ed

ic
te

d High 5 9 15

Medium 7 11 3

Low 27 13 7

Low Medium High

Actual

Table 3. Cross-validation (training set) 
predicted vs actual for grapes, n=262 

Pr
ed

ic
te

d High 0 0 144

Medium 0 63 0

Low 55 0 0

Low Medium High

Actual

Table 4. Holdover (validation set) predicted vs 
actual for grapes, n=87 

Pr
ed

ic
te

d High 3 13 43

Medium 4 8 3

Low 11 0 2

Low Medium High

Actual

Table 5. Cross-validation (training set) 
predicted vs actual for wines, n=291

Pr
ed

ic
te

d High 0 0 75

Medium 0 85 0

Low 131 0 0

Low Medium High

Actual
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