

Removal and addition of sulfur dioxide to must, juice and wine

Background

Addition of hydrogen peroxide (H_2O_2) to juice and wine can be an effective treatment to decrease the concentration of free sulfur dioxide (SO_2) . This fact sheet describes how to calculate H_2O_2 addition rates and the correct procedure for adding H_2O_2 to juice and wine, as well as the use of yeast cultures to decrease small amounts of free SO_2 . It also covers the different forms of SO_2 that can be added to juice and wine.

Removal of SO₂ from wine or juice

Hydrogen peroxide addition

The removal of sulfur dioxide from wine using H_2O_2 is permitted in wine production in Australia. It is an effective and safe procedure when performed carefully. H_2O_2 reacts rapidly with free SO₂ in a wine or juice, oxidising it to sulfate. Following this decrease in free SO₂, further free SO₂ may be generated from the remaining bound fraction.

The H_2O_2 should be added in a dilute form of less than 1% w/v. The addition should be performed slowly with adequate mixing (e.g. tank recirculation, submersible pump) to avoid localised oxidation. It is necessary to wait several hours before reanalysing the concentration of free and total SO_2 to assess the effectiveness of the treatment. This is to allow time for the free and bound SO_2 to re-establish an equilibrium after the removal of a portion of free SO_2 .

The following steps outline how to calculate a H_2O_2 addition. Alternatively, the calculations can also be done using the AWRI's winemaking calculators app, available for both <u>Apple</u> and <u>Android</u> devices.

1. Determine the required decrease of SO₂

Avoid attempting to decrease the free SO_2 to below 10 mg/L using H_2O_2 . Situations may arise where a winemaker is attempting to decrease the free SO_2 down to 10 mg/L. It is recommended in these situations to allow a safety margin of 5 mg/L. Calculate an initial addition to decrease first to 15 mg/L, then analyse the SO_2 concentration before any further H_2O_2 is added.

2. Calculate the mass of SO₂ to be removed

Multiply the concentration of free SO_2 (mg/L) to be removed by the volume of wine (L). This gives the mass of SO_2 to be removed in milligrams (mg). Next, express the mass of SO_2 to be removed in grams (g) by dividing by 1000.

3. Calculate the mass of H_2O_2 required

Molar mass of SO₂ = 64 g/mol

Molar mass of $H_2O_2 = 34$ g/mol

The reaction of SO_2 and H_2O_2 occurs in a 1:1 stoichiometric ratio, meaning that one mole of SO_2 reacts with one mole of H_2O_2 .

Begin by expressing the amount of SO_2 required in moles by dividing the mass in grams of SO_2 to be removed (from step 2) by the molar mass of SO_2 (64 g/mol). Then convert this number of moles to the required mass of H_2O_2 , by multiplying by the molar mass of H_2O_2 (34 g/mol).

4. Determine the volume of H₂O₂ stock solution required

Commercial H_2O_2 is typically 30% w/v (300 g/L).

The required volume of a H_2O_2 stock solution (L) is calculated by dividing the required mass of H_2O_2 (g) by the known concentration of the commercial H_2O_2 stock solution (g/L). In most instances it is practical to convert the volume from litres (L) to milliliters (mL) by multiplying by 1000.

Fact Sheet

Worked example

A 1,700 L tank of wine contains 70 mg/L of free SO₂. The winemaker would like to decrease the SO₂ concentration to 30 mg/L. Removal of 40 mg/L of free SO₂ is required.

1. Determine the required SO₂ decrease and allow for a safety margin where needed.

Amount of SO_2 to be removed = 40 mg/L

2. Calculate the mass in grams of SO_2 to be removed.

Mass of SO_2 to be removed = amount of SO_2 to be removed $(mg/L) \times wine volume (L)$

=
$$40 mg/L \times 1,700 L$$

= $68 000 mg of SO_2$
= $68 g of SO_2$

3. Calculate corresponding amount of H₂O₂ required.

 $Mass of H_2O_2 required in grams = \frac{Mass of SO_2 to be removed (g)}{Molar mass of SO_2 (g/mol)} \times Molar mass of H_2O_2 (g/mol)$

$$= \frac{68 \text{ g of } SO_2}{64 \text{ g/mol}} \times 34 \text{ g/mol}$$
$$= 36.13 \text{ g of } H_2O_2 \text{ required}$$

4. Determine the volume of H_2O_2 stock solution required.

Assume that 30% w/v (300 g/L) H_2O_2 is used

Volume of H_2O_2 stock solution required (L) = $\frac{Mass \text{ of } H_2O_2 \text{ required } (g)}{concentration \text{ of stock solution } (g/L)}$ = $\frac{36.13 \text{ g}}{300 \text{ g/L}}$ = 0.120 L = 120 mL

Practical tips for H₂O₂ additions

- Add H₂O₂ to juice or wine as a dilute solution of less than 1%.
- To remove large amounts of SO₂ add the calculated H₂O₂ in several steps of no more than 25 mg/L of SO₂ at a time.
- Make H₂O₂ additions during tank mixing to avoid localised oxidation.
- Use inert gas cover when appropriate.
- Analyse the SO₂ concentration analysis after each H₂O₂ addition. Wait several hours before analysing the SO₂ concentration to allow time for the free and bound SO₂ to reestablish equilibrium.
- Hydrogen peroxide degrades very quickly. Use fresh solutions and store chemicals appropriately.
- Never decrease free SO₂ to less than 10 mg/L using H₂O₂.
- Allow for a margin of safety where necessary. In situations where you wish to lower the free SO₂ concentration to 10 mg/L, first aim to lower it to 15 mg/L.
- Check your H₂O₂ addition amount with the <u>AWRI winemaking calculator</u> app.

Contact the <u>AWRI helpdesk</u> for further advice regarding the practical aspects of H_2O_2 additions. H_2O_2 is a strong, non-specific oxidising agent. Winemakers should be aware of the potential risks of a loss of wine quality associated with hydrogen peroxide additions if additions are not performed correctly.

Yeast culture addition

'Sacrificial' yeast cultures have been found to be successful in removing amounts of free SO_2 up to 15 mg/L in juice prior to fermentation. Information on the use of 'sacrificial' yeast cultures can be found in the following article: Sacrificial yeast cultures for SO_2 reduction.

The addition of SO₂ to wine or juice

The addition of sulfur dioxide may be made using:

- 'pure' sulfur dioxide (available as a pressurised liquid)
- an aqueous solution prepared by bubbling gaseous SO₂ into water
- as a solid salt, which may be dissolved in water or wine before addition.

The amount of SO₂ added as an aqueous solution depends on the strength of that solution, and may be calculated from its concentration, normally expressed as % weight/volume. The most commonly used salt form is potassium metabisulfite ($K_2S_2O_5$, often abbreviated colloquially to PMS and less commonly KMS).

The proportion of SO_2 yielded from PMS is 57% w/w. Note that the remaining proportion of PMS is comprised of potassium. Increasing the potassium ion concentration of a wine or juice may not always be desirable.

 SO_2 can be added to juice before fermentation as an ammonium bisulfite (NH₄HSO₃) solution. This is often available in preformulated aqueous solutions, which vary in their concentrations. Ammonium bisulfite has a dual purpose of supplementing nitrogen in the form of ammonia to aid fermentation performance, as well as adding SO_2 .

Acknowledgement

This work was supported by Wine Australia with levies from Australia's grapegrowers and winemakers and matching funds from the Australian Government. The AWRI is a member of the Wine Innovation Cluster in Adelaide, SA.

References and further reading

AWRI winemaking calculator – hydrogen peroxide addition. Available from: https://www.awri.com.au/industry_support/winemaking_resources/winemaking-calculators-app/

Cordingley, B. 2022 <u>Ask the AWRI: Sacrificial yeast cultures for SO₂ reduction</u> *Aust. N.Z Grapegrower Winemaker* (696): 52-53.

Contact

For further information, please contact the AWRI helpdesk

Phone 08 8313 6600 Email helpdesk@awri.com.au

Website www.awri.com.au

Address Wine Innovation Central Building, Corner of Hartley Grove & Paratoo Rd, Urrbrae (Adelaide), SA 5064